基于优化CNN-BILSTM-Attention模型的超短期风电预测

iEnergy Pub Date : 2024-12-30 DOI:10.23919/IEN.2024.0026
Weilong Yu;Shuaibing Li;Hao Zhang;Yongqiang Kang;Hongwei Li;Haiying Dong
{"title":"基于优化CNN-BILSTM-Attention模型的超短期风电预测","authors":"Weilong Yu;Shuaibing Li;Hao Zhang;Yongqiang Kang;Hongwei Li;Haiying Dong","doi":"10.23919/IEN.2024.0026","DOIUrl":null,"url":null,"abstract":"The accurate forecast of wind power is crucial for the stable operation and economic dispatch of renewable energy power systems. To improve the accuracy of ultra-short-term wind-power forecast, we propose an improved model combining a convolutional neural network (CNN), bidirectional long short-term memory, and an attention mechanism network. First, the basic principle of the proposed model is introduced along with its merits in ultra-short-term wind-power forecast. Then, relevant data are processed based on the Pearson similarity criterion, and relevant feature parameters for wind-power forecast are optimized. Finally, the proposed model is analyzed based on the public dataset of the Baidu KDD Cup 2022 wind-power forecast competition and actual data from a wind farm in Shandong. Results show that the proposed model can effectively overcome the shortcomings of traditional forecast methods in terms of overfitting, feature extraction, and parameter tuning. Furthermore, the model exhibits higher forecast accuracy and stability.","PeriodicalId":100648,"journal":{"name":"iEnergy","volume":"3 4","pages":"268-282"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10818559","citationCount":"0","resultStr":"{\"title\":\"Ultra-Short-Term Wind-Power Forecasting Based on an Optimized CNN-BILSTM-Attention Model\",\"authors\":\"Weilong Yu;Shuaibing Li;Hao Zhang;Yongqiang Kang;Hongwei Li;Haiying Dong\",\"doi\":\"10.23919/IEN.2024.0026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The accurate forecast of wind power is crucial for the stable operation and economic dispatch of renewable energy power systems. To improve the accuracy of ultra-short-term wind-power forecast, we propose an improved model combining a convolutional neural network (CNN), bidirectional long short-term memory, and an attention mechanism network. First, the basic principle of the proposed model is introduced along with its merits in ultra-short-term wind-power forecast. Then, relevant data are processed based on the Pearson similarity criterion, and relevant feature parameters for wind-power forecast are optimized. Finally, the proposed model is analyzed based on the public dataset of the Baidu KDD Cup 2022 wind-power forecast competition and actual data from a wind farm in Shandong. Results show that the proposed model can effectively overcome the shortcomings of traditional forecast methods in terms of overfitting, feature extraction, and parameter tuning. Furthermore, the model exhibits higher forecast accuracy and stability.\",\"PeriodicalId\":100648,\"journal\":{\"name\":\"iEnergy\",\"volume\":\"3 4\",\"pages\":\"268-282\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10818559\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"iEnergy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10818559/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"iEnergy","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10818559/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

风电功率的准确预测对可再生能源电力系统的稳定运行和经济调度至关重要。为了提高超短期风电预测的准确性,我们提出了一种结合卷积神经网络(CNN)、双向长短期记忆和注意机制网络的改进模型。首先介绍了该模型的基本原理及其在超短期风电预测中的应用。然后,基于Pearson相似准则对相关数据进行处理,优化风电预测的相关特征参数。最后,基于百度KDD杯2022年风电预测大赛的公开数据集和山东某风电场的实际数据,对提出的模型进行了分析。结果表明,该模型能有效克服传统预测方法在过拟合、特征提取、参数整定等方面的不足。该模型具有较高的预测精度和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ultra-Short-Term Wind-Power Forecasting Based on an Optimized CNN-BILSTM-Attention Model
The accurate forecast of wind power is crucial for the stable operation and economic dispatch of renewable energy power systems. To improve the accuracy of ultra-short-term wind-power forecast, we propose an improved model combining a convolutional neural network (CNN), bidirectional long short-term memory, and an attention mechanism network. First, the basic principle of the proposed model is introduced along with its merits in ultra-short-term wind-power forecast. Then, relevant data are processed based on the Pearson similarity criterion, and relevant feature parameters for wind-power forecast are optimized. Finally, the proposed model is analyzed based on the public dataset of the Baidu KDD Cup 2022 wind-power forecast competition and actual data from a wind farm in Shandong. Results show that the proposed model can effectively overcome the shortcomings of traditional forecast methods in terms of overfitting, feature extraction, and parameter tuning. Furthermore, the model exhibits higher forecast accuracy and stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contents Front Cover Methods of Suppressing Ion Migration in n-i-p Perovskite Solar Cells Artificial Intelligence Techniques for Stability Analysis in Modern Power Systems Intelligent Adjustment for Power System Operation Mode Based on Deep Reinforcement Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1