Ramsha Munir, Ameer Fawad Zahoor, Muhammad Naveed Anjum, Usman Nazeer, Atta Ul Haq, Asim Mansha, Aijaz Rasool Chaudhry, Ahmad Irfan
{"title":"染料敏化太阳能电池(DSSC)中咔唑(供体)光敏剂的合成及其光伏性能研究进展","authors":"Ramsha Munir, Ameer Fawad Zahoor, Muhammad Naveed Anjum, Usman Nazeer, Atta Ul Haq, Asim Mansha, Aijaz Rasool Chaudhry, Ahmad Irfan","doi":"10.1007/s41061-024-00488-3","DOIUrl":null,"url":null,"abstract":"<div><p>Carbazoles are nitrogen-containing aromatic heterocycles, having widespread applications in the field of photovoltaics. Carbazole-based photosensitizers have tunable features for absorption on semi-conductor (tellurium dioxide or zinc oxide) layers to create sufficient push–pull force in the conversion of sunlight into electrical energy, thus presenting as promising heterocyclic donor candidates to be used in dye-sensitized solar cells. For the synthesis of these dyes, various structural designs are available, namely, D-A, D-π-A, D-D-π-A, D-A-π-A, A-π-D-π-A-π-A, and D2-π-A that all involve incorporating carbazole as a donor (D), along with spacer (π-extender) moieties, such as thiophene, phenol, ethynylene, nitromethane, azine, thiadiazole, or acetonitrile. Additionally, acceptors (A) employed in the designs include cyanoacrylic acids, carboxylic acids, malononitrile, rhodanine-3-acetic acid, 4-aminobenzoic acid, or 4-amino salicylic acid. This comprehensive review explores the synthesis and photovoltaic performances of numerous carbazole-based photosensitizers tailored for dye-sensitized solar cells, covering the period of 2019–2023.</p></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"383 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis And Photovoltaic Performance of Carbazole (Donor) Based Photosensitizers in Dye-Sensitized Solar Cells (DSSC): A Review\",\"authors\":\"Ramsha Munir, Ameer Fawad Zahoor, Muhammad Naveed Anjum, Usman Nazeer, Atta Ul Haq, Asim Mansha, Aijaz Rasool Chaudhry, Ahmad Irfan\",\"doi\":\"10.1007/s41061-024-00488-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Carbazoles are nitrogen-containing aromatic heterocycles, having widespread applications in the field of photovoltaics. Carbazole-based photosensitizers have tunable features for absorption on semi-conductor (tellurium dioxide or zinc oxide) layers to create sufficient push–pull force in the conversion of sunlight into electrical energy, thus presenting as promising heterocyclic donor candidates to be used in dye-sensitized solar cells. For the synthesis of these dyes, various structural designs are available, namely, D-A, D-π-A, D-D-π-A, D-A-π-A, A-π-D-π-A-π-A, and D2-π-A that all involve incorporating carbazole as a donor (D), along with spacer (π-extender) moieties, such as thiophene, phenol, ethynylene, nitromethane, azine, thiadiazole, or acetonitrile. Additionally, acceptors (A) employed in the designs include cyanoacrylic acids, carboxylic acids, malononitrile, rhodanine-3-acetic acid, 4-aminobenzoic acid, or 4-amino salicylic acid. This comprehensive review explores the synthesis and photovoltaic performances of numerous carbazole-based photosensitizers tailored for dye-sensitized solar cells, covering the period of 2019–2023.</p></div>\",\"PeriodicalId\":802,\"journal\":{\"name\":\"Topics in Current Chemistry\",\"volume\":\"383 1\",\"pages\":\"\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topics in Current Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41061-024-00488-3\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Current Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41061-024-00488-3","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
Synthesis And Photovoltaic Performance of Carbazole (Donor) Based Photosensitizers in Dye-Sensitized Solar Cells (DSSC): A Review
Carbazoles are nitrogen-containing aromatic heterocycles, having widespread applications in the field of photovoltaics. Carbazole-based photosensitizers have tunable features for absorption on semi-conductor (tellurium dioxide or zinc oxide) layers to create sufficient push–pull force in the conversion of sunlight into electrical energy, thus presenting as promising heterocyclic donor candidates to be used in dye-sensitized solar cells. For the synthesis of these dyes, various structural designs are available, namely, D-A, D-π-A, D-D-π-A, D-A-π-A, A-π-D-π-A-π-A, and D2-π-A that all involve incorporating carbazole as a donor (D), along with spacer (π-extender) moieties, such as thiophene, phenol, ethynylene, nitromethane, azine, thiadiazole, or acetonitrile. Additionally, acceptors (A) employed in the designs include cyanoacrylic acids, carboxylic acids, malononitrile, rhodanine-3-acetic acid, 4-aminobenzoic acid, or 4-amino salicylic acid. This comprehensive review explores the synthesis and photovoltaic performances of numerous carbazole-based photosensitizers tailored for dye-sensitized solar cells, covering the period of 2019–2023.
期刊介绍:
Topics in Current Chemistry provides in-depth analyses and forward-thinking perspectives on the latest advancements in chemical research. This renowned journal encompasses various domains within chemical science and their intersections with biology, medicine, physics, and materials science.
Each collection within the journal aims to offer a comprehensive understanding, accessible to both academic and industrial readers, of emerging research in an area that captivates a broader scientific community.
In essence, Topics in Current Chemistry illuminates cutting-edge chemical research, fosters interdisciplinary collaboration, and facilitates knowledge-sharing among diverse scientific audiences.