混凝土健康监测的创新方法:小波变换和人工智能模型

Soumyadip Das, Aloke Kumar Datta, Pijush Topdar, Apurba Pal
{"title":"混凝土健康监测的创新方法:小波变换和人工智能模型","authors":"Soumyadip Das,&nbsp;Aloke Kumar Datta,&nbsp;Pijush Topdar,&nbsp;Apurba Pal","doi":"10.1007/s42107-024-01178-7","DOIUrl":null,"url":null,"abstract":"<div><p>The health monitoring of concrete structures is of principal concern to avoid major accidents. Presently, many large-scale structures have been constructed throughout the world and in India. Therefore, there is an urgent need for sensor-aided research to keep all these large infrastructural facilities for the long life in an uninterrupted manner. As per the available literature, the Acoustic Emission (AE) sensor data and its deployment for the development of an artificial intelligence (AI) model is most suitable for health monitoring of these types of structures. Researchers have used the signal processing method. However, the AI models have significantly reduced the effort as well as errors in the computation process. In this study, an experimental investigation is done using the AE system for data generation. A good number of concrete slabs of different grades were cast and used for generating data deploying the Pencil Lead Break (PLB) approach. The generated data was utilized for finding the damage location using the WT method and AI models. The developed AI model is more effective in the health monitoring of concrete structures as the error in calculation is less as compared to the WT method. The model is also validated by identifying the damage source (simulated) in the concrete slab. This approach can be utilized for real-time health monitoring of large-scale concrete structures comprised of slab-like components without any interruption. Results show promising trends for further research for making the health monitoring process in wider application of civil engineering structures.</p></div>","PeriodicalId":8513,"journal":{"name":"Asian Journal of Civil Engineering","volume":"26 1","pages":"107 - 120"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovative approaches to concrete health monitoring: wavelet transform and artificial intelligence models\",\"authors\":\"Soumyadip Das,&nbsp;Aloke Kumar Datta,&nbsp;Pijush Topdar,&nbsp;Apurba Pal\",\"doi\":\"10.1007/s42107-024-01178-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The health monitoring of concrete structures is of principal concern to avoid major accidents. Presently, many large-scale structures have been constructed throughout the world and in India. Therefore, there is an urgent need for sensor-aided research to keep all these large infrastructural facilities for the long life in an uninterrupted manner. As per the available literature, the Acoustic Emission (AE) sensor data and its deployment for the development of an artificial intelligence (AI) model is most suitable for health monitoring of these types of structures. Researchers have used the signal processing method. However, the AI models have significantly reduced the effort as well as errors in the computation process. In this study, an experimental investigation is done using the AE system for data generation. A good number of concrete slabs of different grades were cast and used for generating data deploying the Pencil Lead Break (PLB) approach. The generated data was utilized for finding the damage location using the WT method and AI models. The developed AI model is more effective in the health monitoring of concrete structures as the error in calculation is less as compared to the WT method. The model is also validated by identifying the damage source (simulated) in the concrete slab. This approach can be utilized for real-time health monitoring of large-scale concrete structures comprised of slab-like components without any interruption. Results show promising trends for further research for making the health monitoring process in wider application of civil engineering structures.</p></div>\",\"PeriodicalId\":8513,\"journal\":{\"name\":\"Asian Journal of Civil Engineering\",\"volume\":\"26 1\",\"pages\":\"107 - 120\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Civil Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42107-024-01178-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42107-024-01178-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

混凝土结构的健康监测是避免重大事故发生的首要问题。目前,世界各地和印度已经建造了许多大型结构。因此,迫切需要进行传感器辅助研究,以保持所有这些大型基础设施的长寿命不间断。根据现有文献,声发射(AE)传感器数据及其用于开发人工智能(AI)模型的部署最适合对这些类型的结构进行健康监测。研究人员使用了信号处理方法。然而,人工智能模型大大减少了计算过程中的工作量和误差。本研究利用声发射系统进行数据生成的实验研究。大量不同等级的混凝土板被浇筑,并用于使用铅笔芯断裂(PLB)方法生成数据。生成的数据被用于使用小波变换方法和人工智能模型寻找损伤位置。与小波变换方法相比,所建立的人工智能模型计算误差更小,在混凝土结构健康监测中更为有效。通过对混凝土板损伤源(模拟)的识别,验证了模型的有效性。该方法可用于由板状构件组成的大型混凝土结构的实时健康监测。研究结果为进一步研究使健康监测过程在土木工程结构中得到更广泛的应用提供了良好的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Innovative approaches to concrete health monitoring: wavelet transform and artificial intelligence models

The health monitoring of concrete structures is of principal concern to avoid major accidents. Presently, many large-scale structures have been constructed throughout the world and in India. Therefore, there is an urgent need for sensor-aided research to keep all these large infrastructural facilities for the long life in an uninterrupted manner. As per the available literature, the Acoustic Emission (AE) sensor data and its deployment for the development of an artificial intelligence (AI) model is most suitable for health monitoring of these types of structures. Researchers have used the signal processing method. However, the AI models have significantly reduced the effort as well as errors in the computation process. In this study, an experimental investigation is done using the AE system for data generation. A good number of concrete slabs of different grades were cast and used for generating data deploying the Pencil Lead Break (PLB) approach. The generated data was utilized for finding the damage location using the WT method and AI models. The developed AI model is more effective in the health monitoring of concrete structures as the error in calculation is less as compared to the WT method. The model is also validated by identifying the damage source (simulated) in the concrete slab. This approach can be utilized for real-time health monitoring of large-scale concrete structures comprised of slab-like components without any interruption. Results show promising trends for further research for making the health monitoring process in wider application of civil engineering structures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asian Journal of Civil Engineering
Asian Journal of Civil Engineering Engineering-Civil and Structural Engineering
CiteScore
2.70
自引率
0.00%
发文量
121
期刊介绍: The Asian Journal of Civil Engineering (Building and Housing) welcomes articles and research contributions on topics such as:- Structural analysis and design - Earthquake and structural engineering - New building materials and concrete technology - Sustainable building and energy conservation - Housing and planning - Construction management - Optimal design of structuresPlease note that the journal will not accept papers in the area of hydraulic or geotechnical engineering, traffic/transportation or road making engineering, and on materials relevant to non-structural buildings, e.g. materials for road making and asphalt.  Although the journal will publish authoritative papers on theoretical and experimental research works and advanced applications, it may also feature, when appropriate:  a) tutorial survey type papers reviewing some fields of civil engineering; b) short communications and research notes; c) book reviews and conference announcements.
期刊最新文献
A hybrid light GBM and Harris Hawks optimization approach for forecasting construction project performance: enhancing schedule and budget predictions Experimental investigation on mechanical properties of lightweight reactive powder concrete using lightweight expanded clay sand Metaheuristic machine learning for optimizing sustainable interior design: enhancing aesthetic and functional rehabilitation in housing projects Quantifying compressive strength in limestone powder incorporated concrete with incorporating various machine learning algorithms with SHAP analysis A new model for monitoring nonlinear elastic behavior of reinforced concrete structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1