Pragalv Karki, Matthew C Murphy, Sandeep Ganji, Jeffrey L Gunter, Jonathan Graff-Radford, David T Jones, Hugo Botha, Jeremy K Cutsforth-Gregory, Benjamin D Elder, Clifford R Jack, John Huston, Petrice M Cogswell
{"title":"实时二维相对比MRI评估正常压力脑积水患者心脏和呼吸驱动的脑脊液运动。","authors":"Pragalv Karki, Matthew C Murphy, Sandeep Ganji, Jeffrey L Gunter, Jonathan Graff-Radford, David T Jones, Hugo Botha, Jeremy K Cutsforth-Gregory, Benjamin D Elder, Clifford R Jack, John Huston, Petrice M Cogswell","doi":"10.1111/jon.70000","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>In idiopathic normal pressure hydrocephalus (iNPH) patients, cerebrospinal fluid (CSF) flow is typically evaluated with a cardiac-gated two-dimensional (2D) phase-contrast (PC) MRI through the cerebral aqueduct. This approach is limited by the evaluation of a single location and does not account for respiration effects on flow. In this study, we quantified the cardiac and respiratory contributions to CSF movement at multiple intracranial locations using a real-time 2D PC-MRI and evaluated the diagnostic value of CSF dynamics biomarkers in classifying iNPH patients.</p><p><strong>Methods: </strong>This study included 37 participants: 16 iNPH, 10 Alzheimer's disease (AD), and 11 cognitively unimpaired (CU) controls. Anatomical and real-time (non-gated) PC images were acquired in a 3T Philips scanner. CSF flow was assessed at the foramen magnum, fourth ventricle, Sylvian fissure, lateral ventricle, and cerebral aqueduct. We calculated three CSF dynamics biomarkers: mean velocity amplitude, cardiac signal power, and respiratory signal power. Biomarkers from each location were evaluated for classifying iNPH versus AD and CU using support vector machine (SVM). A p-value of 0.05 or less was considered statistically significant.</p><p><strong>Results: </strong>The velocity amplitude and cardiac signal power were significantly reduced in iNPH compared to CU (p < 0.005) and AD (p < 0.05) at the lateral ventricle. The SVM model using biomarkers from the lateral ventricle performed significantly better at classifying iNPH than the other locations in terms of accuracy (p < 0.005) and diagnostic odds ratio (p < 0.05).</p><p><strong>Conclusion: </strong>Evaluation of CSF movement beyond the cerebral aqueduct may aid in identifying patients with and understanding the pathophysiology of iNPH.</p>","PeriodicalId":16399,"journal":{"name":"Journal of Neuroimaging","volume":"35 1","pages":"e70000"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11686571/pdf/","citationCount":"0","resultStr":"{\"title\":\"Real-Time 2D Phase-Contrast MRI to Assess Cardiac- and Respiratory-Driven CSF Movement in Normal Pressure Hydrocephalus.\",\"authors\":\"Pragalv Karki, Matthew C Murphy, Sandeep Ganji, Jeffrey L Gunter, Jonathan Graff-Radford, David T Jones, Hugo Botha, Jeremy K Cutsforth-Gregory, Benjamin D Elder, Clifford R Jack, John Huston, Petrice M Cogswell\",\"doi\":\"10.1111/jon.70000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and purpose: </strong>In idiopathic normal pressure hydrocephalus (iNPH) patients, cerebrospinal fluid (CSF) flow is typically evaluated with a cardiac-gated two-dimensional (2D) phase-contrast (PC) MRI through the cerebral aqueduct. This approach is limited by the evaluation of a single location and does not account for respiration effects on flow. In this study, we quantified the cardiac and respiratory contributions to CSF movement at multiple intracranial locations using a real-time 2D PC-MRI and evaluated the diagnostic value of CSF dynamics biomarkers in classifying iNPH patients.</p><p><strong>Methods: </strong>This study included 37 participants: 16 iNPH, 10 Alzheimer's disease (AD), and 11 cognitively unimpaired (CU) controls. Anatomical and real-time (non-gated) PC images were acquired in a 3T Philips scanner. CSF flow was assessed at the foramen magnum, fourth ventricle, Sylvian fissure, lateral ventricle, and cerebral aqueduct. We calculated three CSF dynamics biomarkers: mean velocity amplitude, cardiac signal power, and respiratory signal power. Biomarkers from each location were evaluated for classifying iNPH versus AD and CU using support vector machine (SVM). A p-value of 0.05 or less was considered statistically significant.</p><p><strong>Results: </strong>The velocity amplitude and cardiac signal power were significantly reduced in iNPH compared to CU (p < 0.005) and AD (p < 0.05) at the lateral ventricle. The SVM model using biomarkers from the lateral ventricle performed significantly better at classifying iNPH than the other locations in terms of accuracy (p < 0.005) and diagnostic odds ratio (p < 0.05).</p><p><strong>Conclusion: </strong>Evaluation of CSF movement beyond the cerebral aqueduct may aid in identifying patients with and understanding the pathophysiology of iNPH.</p>\",\"PeriodicalId\":16399,\"journal\":{\"name\":\"Journal of Neuroimaging\",\"volume\":\"35 1\",\"pages\":\"e70000\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11686571/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroimaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/jon.70000\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroimaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jon.70000","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Real-Time 2D Phase-Contrast MRI to Assess Cardiac- and Respiratory-Driven CSF Movement in Normal Pressure Hydrocephalus.
Background and purpose: In idiopathic normal pressure hydrocephalus (iNPH) patients, cerebrospinal fluid (CSF) flow is typically evaluated with a cardiac-gated two-dimensional (2D) phase-contrast (PC) MRI through the cerebral aqueduct. This approach is limited by the evaluation of a single location and does not account for respiration effects on flow. In this study, we quantified the cardiac and respiratory contributions to CSF movement at multiple intracranial locations using a real-time 2D PC-MRI and evaluated the diagnostic value of CSF dynamics biomarkers in classifying iNPH patients.
Methods: This study included 37 participants: 16 iNPH, 10 Alzheimer's disease (AD), and 11 cognitively unimpaired (CU) controls. Anatomical and real-time (non-gated) PC images were acquired in a 3T Philips scanner. CSF flow was assessed at the foramen magnum, fourth ventricle, Sylvian fissure, lateral ventricle, and cerebral aqueduct. We calculated three CSF dynamics biomarkers: mean velocity amplitude, cardiac signal power, and respiratory signal power. Biomarkers from each location were evaluated for classifying iNPH versus AD and CU using support vector machine (SVM). A p-value of 0.05 or less was considered statistically significant.
Results: The velocity amplitude and cardiac signal power were significantly reduced in iNPH compared to CU (p < 0.005) and AD (p < 0.05) at the lateral ventricle. The SVM model using biomarkers from the lateral ventricle performed significantly better at classifying iNPH than the other locations in terms of accuracy (p < 0.005) and diagnostic odds ratio (p < 0.05).
Conclusion: Evaluation of CSF movement beyond the cerebral aqueduct may aid in identifying patients with and understanding the pathophysiology of iNPH.
期刊介绍:
Start reading the Journal of Neuroimaging to learn the latest neurological imaging techniques. The peer-reviewed research is written in a practical clinical context, giving you the information you need on:
MRI
CT
Carotid Ultrasound and TCD
SPECT
PET
Endovascular Surgical Neuroradiology
Functional MRI
Xenon CT
and other new and upcoming neuroscientific modalities.The Journal of Neuroimaging addresses the full spectrum of human nervous system disease, including stroke, neoplasia, degenerating and demyelinating disease, epilepsy, tumors, lesions, infectious disease, cerebral vascular arterial diseases, toxic-metabolic disease, psychoses, dementias, heredo-familial disease, and trauma.Offering original research, review articles, case reports, neuroimaging CPCs, and evaluations of instruments and technology relevant to the nervous system, the Journal of Neuroimaging focuses on useful clinical developments and applications, tested techniques and interpretations, patient care, diagnostics, and therapeutics. Start reading today!