{"title":"开发地衣芽孢杆菌新生产γ-氨基丁酸和其他谷氨酸衍生化学品的平台。","authors":"Shiyi Wang, Jiang Zhu, Yiwen Zhao, Shufen Mao, Yihui He, Feixiang Wang, Tianli Jia, Dongbo Cai, Junyong Chen, Dong Wang, Shouwen Chen","doi":"10.1016/j.ymben.2024.12.010","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial cell factories (MCFs) have emerged as a sustainable tool for the production of value-added biochemicals. However, developing high-performance MCFs remains a major challenge to fulfill the burgeoning demands of global markets. This study aimed to establish the B. licheniformis cell factory for the cost-effective production of glutamate-derived chemicals by modular metabolic engineering. Initially, the glutamate decarboxylase from E. coli was introduced into B. licheniformis DW2 to construct the artificial γ-aminobutyric acid (GABA) pathway. By systematically optimizing the central metabolic pathway, boosting the L-Glu synthesis pathway and improving the cofactor NADPH supply, the strain G35/pHY-P<sub>r5u12</sub>-gadB<sup>E89Q/H465A</sup> achieved a remarkable yield of 62.9 g/L of GABA in a 5-L bioreactor, representing the highest yield of 0.5 g/g glucose with a significant 49.3-fold increase. Remarkably, bioinformatics analyses and function verification identified the putative glyoxylate to glycolic acid synthesis pathway and KipR, an inhibitor of the glyoxylate cycle, as the rate-limiting steps in GABA production. Additionally, a versatile and robust platform using engineered B. licheniformis for efficient production of diverse glutamate-derived chemicals was established and the titer of 5-aminolevulinic acid, heme and indigoidine was improved by 5.3-, 4.7- and 1.9-fold, respectively. This study not only facilitates extensive application of B. licheniformis for chemical production, but also sheds light on research to improve the performance of other MCFs.</p>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":" ","pages":"124-136"},"PeriodicalIF":6.8000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing a Bacillus licheniformis platform for de novo production of γ-aminobutyric acid and other glutamate-derived chemicals.\",\"authors\":\"Shiyi Wang, Jiang Zhu, Yiwen Zhao, Shufen Mao, Yihui He, Feixiang Wang, Tianli Jia, Dongbo Cai, Junyong Chen, Dong Wang, Shouwen Chen\",\"doi\":\"10.1016/j.ymben.2024.12.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microbial cell factories (MCFs) have emerged as a sustainable tool for the production of value-added biochemicals. However, developing high-performance MCFs remains a major challenge to fulfill the burgeoning demands of global markets. This study aimed to establish the B. licheniformis cell factory for the cost-effective production of glutamate-derived chemicals by modular metabolic engineering. Initially, the glutamate decarboxylase from E. coli was introduced into B. licheniformis DW2 to construct the artificial γ-aminobutyric acid (GABA) pathway. By systematically optimizing the central metabolic pathway, boosting the L-Glu synthesis pathway and improving the cofactor NADPH supply, the strain G35/pHY-P<sub>r5u12</sub>-gadB<sup>E89Q/H465A</sup> achieved a remarkable yield of 62.9 g/L of GABA in a 5-L bioreactor, representing the highest yield of 0.5 g/g glucose with a significant 49.3-fold increase. Remarkably, bioinformatics analyses and function verification identified the putative glyoxylate to glycolic acid synthesis pathway and KipR, an inhibitor of the glyoxylate cycle, as the rate-limiting steps in GABA production. Additionally, a versatile and robust platform using engineered B. licheniformis for efficient production of diverse glutamate-derived chemicals was established and the titer of 5-aminolevulinic acid, heme and indigoidine was improved by 5.3-, 4.7- and 1.9-fold, respectively. This study not only facilitates extensive application of B. licheniformis for chemical production, but also sheds light on research to improve the performance of other MCFs.</p>\",\"PeriodicalId\":18483,\"journal\":{\"name\":\"Metabolic engineering\",\"volume\":\" \",\"pages\":\"124-136\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolic engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ymben.2024.12.010\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ymben.2024.12.010","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Developing a Bacillus licheniformis platform for de novo production of γ-aminobutyric acid and other glutamate-derived chemicals.
Microbial cell factories (MCFs) have emerged as a sustainable tool for the production of value-added biochemicals. However, developing high-performance MCFs remains a major challenge to fulfill the burgeoning demands of global markets. This study aimed to establish the B. licheniformis cell factory for the cost-effective production of glutamate-derived chemicals by modular metabolic engineering. Initially, the glutamate decarboxylase from E. coli was introduced into B. licheniformis DW2 to construct the artificial γ-aminobutyric acid (GABA) pathway. By systematically optimizing the central metabolic pathway, boosting the L-Glu synthesis pathway and improving the cofactor NADPH supply, the strain G35/pHY-Pr5u12-gadBE89Q/H465A achieved a remarkable yield of 62.9 g/L of GABA in a 5-L bioreactor, representing the highest yield of 0.5 g/g glucose with a significant 49.3-fold increase. Remarkably, bioinformatics analyses and function verification identified the putative glyoxylate to glycolic acid synthesis pathway and KipR, an inhibitor of the glyoxylate cycle, as the rate-limiting steps in GABA production. Additionally, a versatile and robust platform using engineered B. licheniformis for efficient production of diverse glutamate-derived chemicals was established and the titer of 5-aminolevulinic acid, heme and indigoidine was improved by 5.3-, 4.7- and 1.9-fold, respectively. This study not only facilitates extensive application of B. licheniformis for chemical production, but also sheds light on research to improve the performance of other MCFs.
期刊介绍:
Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.