Anna Berezovskaia, Morgan Thomsen, Anders Fink-Jensen, Gitta Wörtwein
{"title":"M4毒蕈碱胆碱能自身受体缺失对可卡因和东莨菪碱刺激运动的性别特异性影响。","authors":"Anna Berezovskaia, Morgan Thomsen, Anders Fink-Jensen, Gitta Wörtwein","doi":"10.3389/fnmol.2024.1451010","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Acetylcholine modulates the activity of the direct and indirect pathways within the striatum through interaction with muscarinic M<sub>4</sub> and M<sub>1</sub> receptors. M<sub>4</sub> receptors are uniquely positioned to regulate plasticity within the direct pathway and play a substantial role in reward and addiction-related behaviors. However, the role of M<sub>4</sub> receptors on cholinergic neurons has been less explored. This study aims to fill this gap by addressing the role of M<sub>4</sub> receptors on cholinergic neurons in these behaviors.</p><p><strong>Methods: </strong>To investigate the significance of M<sub>4</sub>-dependent inhibitory signaling in cholinergic neurons we created mutant mice that lack M<sub>4</sub> receptors on cholinergic neurons. Cholinergic neuron-specific depletion was confirmed using <i>in situ</i> hybridization. We aimed to untangle the possible contribution of M<sub>4</sub> autoreceptors to the effects of the global M<sub>4</sub> knockout by examining aspects of basal locomotion and dose-dependent reactivity to the psychostimulant and rewarding properties of cocaine, haloperidol-induced catalepsy, and examined both the anti-cataleptic and locomotion-inducing effects of the non-selective anticholinergic drug scopolamine.</p><p><strong>Results: </strong>Basal phenotype assessment revealed no developmental deficits in knockout mice. Cocaine stimulated locomotion in both genotypes, with no differences observed at lower doses. However, at the highest cocaine dose tested, male knockout mice displayed significantly less activity compared to wild type littermates (<i>p</i> = 0.0084). Behavioral sensitization to cocaine was similar between knockout and wild type mice. Conditioned place preference tests indicated no differences in the rewarding effects of cocaine between genotypes. In food-reinforced operant tasks knockout and wild type mice successfully acquired the tasks with comparable performance results. M<sub>4</sub> receptor depletion did not affect haloperidol-induced catalepsy and scopolamine reversal of catalepsy but attenuated scopolamine-induced locomotion in females (<i>p</i> = 0.04). Our results show that M<sub>4</sub> receptor depletion attenuated the locomotor response to high doses of cocaine in males and scopolamine in females, suggesting sex-specific regulation of cholinergic activity.</p><p><strong>Conclusion: </strong>Depletion of M<sub>4</sub> receptors on cholinergic neurons does not significantly impact basal behavior or cocaine-induced hyperactivity but may modulate the response to high doses of cocaine in male mice and the response to scopolamine in female mice. Overall, our findings suggest that M<sub>4</sub>-dependent autoregulation plays a minor but delicate role in modulating specific behavioral responses to pharmacological challenges, possibly in a sex-dependent manner.</p>","PeriodicalId":12630,"journal":{"name":"Frontiers in Molecular Neuroscience","volume":"17 ","pages":"1451010"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683150/pdf/","citationCount":"0","resultStr":"{\"title\":\"A sex-specific effect of M<sub>4</sub> muscarinic cholinergic autoreceptor deletion on locomotor stimulation by cocaine and scopolamine.\",\"authors\":\"Anna Berezovskaia, Morgan Thomsen, Anders Fink-Jensen, Gitta Wörtwein\",\"doi\":\"10.3389/fnmol.2024.1451010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Acetylcholine modulates the activity of the direct and indirect pathways within the striatum through interaction with muscarinic M<sub>4</sub> and M<sub>1</sub> receptors. M<sub>4</sub> receptors are uniquely positioned to regulate plasticity within the direct pathway and play a substantial role in reward and addiction-related behaviors. However, the role of M<sub>4</sub> receptors on cholinergic neurons has been less explored. This study aims to fill this gap by addressing the role of M<sub>4</sub> receptors on cholinergic neurons in these behaviors.</p><p><strong>Methods: </strong>To investigate the significance of M<sub>4</sub>-dependent inhibitory signaling in cholinergic neurons we created mutant mice that lack M<sub>4</sub> receptors on cholinergic neurons. Cholinergic neuron-specific depletion was confirmed using <i>in situ</i> hybridization. We aimed to untangle the possible contribution of M<sub>4</sub> autoreceptors to the effects of the global M<sub>4</sub> knockout by examining aspects of basal locomotion and dose-dependent reactivity to the psychostimulant and rewarding properties of cocaine, haloperidol-induced catalepsy, and examined both the anti-cataleptic and locomotion-inducing effects of the non-selective anticholinergic drug scopolamine.</p><p><strong>Results: </strong>Basal phenotype assessment revealed no developmental deficits in knockout mice. Cocaine stimulated locomotion in both genotypes, with no differences observed at lower doses. However, at the highest cocaine dose tested, male knockout mice displayed significantly less activity compared to wild type littermates (<i>p</i> = 0.0084). Behavioral sensitization to cocaine was similar between knockout and wild type mice. Conditioned place preference tests indicated no differences in the rewarding effects of cocaine between genotypes. In food-reinforced operant tasks knockout and wild type mice successfully acquired the tasks with comparable performance results. M<sub>4</sub> receptor depletion did not affect haloperidol-induced catalepsy and scopolamine reversal of catalepsy but attenuated scopolamine-induced locomotion in females (<i>p</i> = 0.04). Our results show that M<sub>4</sub> receptor depletion attenuated the locomotor response to high doses of cocaine in males and scopolamine in females, suggesting sex-specific regulation of cholinergic activity.</p><p><strong>Conclusion: </strong>Depletion of M<sub>4</sub> receptors on cholinergic neurons does not significantly impact basal behavior or cocaine-induced hyperactivity but may modulate the response to high doses of cocaine in male mice and the response to scopolamine in female mice. Overall, our findings suggest that M<sub>4</sub>-dependent autoregulation plays a minor but delicate role in modulating specific behavioral responses to pharmacological challenges, possibly in a sex-dependent manner.</p>\",\"PeriodicalId\":12630,\"journal\":{\"name\":\"Frontiers in Molecular Neuroscience\",\"volume\":\"17 \",\"pages\":\"1451010\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683150/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Molecular Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fnmol.2024.1451010\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Molecular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnmol.2024.1451010","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
A sex-specific effect of M4 muscarinic cholinergic autoreceptor deletion on locomotor stimulation by cocaine and scopolamine.
Objective: Acetylcholine modulates the activity of the direct and indirect pathways within the striatum through interaction with muscarinic M4 and M1 receptors. M4 receptors are uniquely positioned to regulate plasticity within the direct pathway and play a substantial role in reward and addiction-related behaviors. However, the role of M4 receptors on cholinergic neurons has been less explored. This study aims to fill this gap by addressing the role of M4 receptors on cholinergic neurons in these behaviors.
Methods: To investigate the significance of M4-dependent inhibitory signaling in cholinergic neurons we created mutant mice that lack M4 receptors on cholinergic neurons. Cholinergic neuron-specific depletion was confirmed using in situ hybridization. We aimed to untangle the possible contribution of M4 autoreceptors to the effects of the global M4 knockout by examining aspects of basal locomotion and dose-dependent reactivity to the psychostimulant and rewarding properties of cocaine, haloperidol-induced catalepsy, and examined both the anti-cataleptic and locomotion-inducing effects of the non-selective anticholinergic drug scopolamine.
Results: Basal phenotype assessment revealed no developmental deficits in knockout mice. Cocaine stimulated locomotion in both genotypes, with no differences observed at lower doses. However, at the highest cocaine dose tested, male knockout mice displayed significantly less activity compared to wild type littermates (p = 0.0084). Behavioral sensitization to cocaine was similar between knockout and wild type mice. Conditioned place preference tests indicated no differences in the rewarding effects of cocaine between genotypes. In food-reinforced operant tasks knockout and wild type mice successfully acquired the tasks with comparable performance results. M4 receptor depletion did not affect haloperidol-induced catalepsy and scopolamine reversal of catalepsy but attenuated scopolamine-induced locomotion in females (p = 0.04). Our results show that M4 receptor depletion attenuated the locomotor response to high doses of cocaine in males and scopolamine in females, suggesting sex-specific regulation of cholinergic activity.
Conclusion: Depletion of M4 receptors on cholinergic neurons does not significantly impact basal behavior or cocaine-induced hyperactivity but may modulate the response to high doses of cocaine in male mice and the response to scopolamine in female mice. Overall, our findings suggest that M4-dependent autoregulation plays a minor but delicate role in modulating specific behavioral responses to pharmacological challenges, possibly in a sex-dependent manner.
期刊介绍:
Frontiers in Molecular Neuroscience is a first-tier electronic journal devoted to identifying key molecules, as well as their functions and interactions, that underlie the structure, design and function of the brain across all levels. The scope of our journal encompasses synaptic and cellular proteins, coding and non-coding RNA, and molecular mechanisms regulating cellular and dendritic RNA translation. In recent years, a plethora of new cellular and synaptic players have been identified from reduced systems, such as neuronal cultures, but the relevance of these molecules in terms of cellular and synaptic function and plasticity in the living brain and its circuits has not been validated. The effects of spine growth and density observed using gene products identified from in vitro work are frequently not reproduced in vivo. Our journal is particularly interested in studies on genetically engineered model organisms (C. elegans, Drosophila, mouse), in which alterations in key molecules underlying cellular and synaptic function and plasticity produce defined anatomical, physiological and behavioral changes. In the mouse, genetic alterations limited to particular neural circuits (olfactory bulb, motor cortex, cortical layers, hippocampal subfields, cerebellum), preferably regulated in time and on demand, are of special interest, as they sidestep potential compensatory developmental effects.