电刺激下基于机器学习的神经激活代理模型的表征。

IF 1.8 3区 生物学 Q3 BIOLOGY Bioelectromagnetics Pub Date : 2024-12-30 DOI:10.1002/bem.22535
Laura Toni, Luca Pierantoni, Claudio Verardo, Simone Romeni, Silvestro Micera
{"title":"电刺激下基于机器学习的神经激活代理模型的表征。","authors":"Laura Toni,&nbsp;Luca Pierantoni,&nbsp;Claudio Verardo,&nbsp;Simone Romeni,&nbsp;Silvestro Micera","doi":"10.1002/bem.22535","DOIUrl":null,"url":null,"abstract":"<p>Electrical stimulation of peripheral nerves via implanted electrodes has been shown to be a promising approach to restore sensation, movement, and autonomic functions across a wide range of illnesses and injuries. While in principle computational models of neuromodulation can allow the exploration of large parameter spaces and the automatic optimization of stimulation devices and strategies, their high time complexity hinders their use on a large scale. We recently proposed the use of machine learning-based surrogate models to estimate the activation of nerve fibers under electrical stimulation, producing a considerable speed-up with respect to biophysically accurate models of fiber excitation while retaining good predictivity. Here, we characterize the performance of four frequently employed machine learning algorithms and provide an illustrative example of their ability to generalize to unseen stimulation protocols, stimulating sites, and nerve sections. We then discuss how the ability to generalize to such scenarios is relevant to different optimization protocols, paving the way for the automatic optimization of neuromodulation applications.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"46 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683760/pdf/","citationCount":"0","resultStr":"{\"title\":\"Characterization of Machine Learning-Based Surrogate Models of Neural Activation Under Electrical Stimulation\",\"authors\":\"Laura Toni,&nbsp;Luca Pierantoni,&nbsp;Claudio Verardo,&nbsp;Simone Romeni,&nbsp;Silvestro Micera\",\"doi\":\"10.1002/bem.22535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electrical stimulation of peripheral nerves via implanted electrodes has been shown to be a promising approach to restore sensation, movement, and autonomic functions across a wide range of illnesses and injuries. While in principle computational models of neuromodulation can allow the exploration of large parameter spaces and the automatic optimization of stimulation devices and strategies, their high time complexity hinders their use on a large scale. We recently proposed the use of machine learning-based surrogate models to estimate the activation of nerve fibers under electrical stimulation, producing a considerable speed-up with respect to biophysically accurate models of fiber excitation while retaining good predictivity. Here, we characterize the performance of four frequently employed machine learning algorithms and provide an illustrative example of their ability to generalize to unseen stimulation protocols, stimulating sites, and nerve sections. We then discuss how the ability to generalize to such scenarios is relevant to different optimization protocols, paving the way for the automatic optimization of neuromodulation applications.</p>\",\"PeriodicalId\":8956,\"journal\":{\"name\":\"Bioelectromagnetics\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683760/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioelectromagnetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bem.22535\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectromagnetics","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bem.22535","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

通过植入电极对周围神经进行电刺激已被证明是一种很有前途的方法,可以恢复各种疾病和损伤的感觉、运动和自主神经功能。虽然原则上神经调节的计算模型可以允许探索大参数空间和刺激装置和策略的自动优化,但其高时间复杂性阻碍了它们在大规模上的使用。我们最近提出使用基于机器学习的替代模型来估计电刺激下神经纤维的激活,相对于纤维兴奋的生物物理精确模型,产生了相当大的加速,同时保持了良好的预测性。在这里,我们描述了四种常用的机器学习算法的性能,并提供了一个说明性的例子,说明它们能够推广到看不见的刺激方案、刺激部位和神经部分。然后,我们讨论了如何将这种能力推广到与不同优化协议相关的场景,为神经调节应用的自动优化铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterization of Machine Learning-Based Surrogate Models of Neural Activation Under Electrical Stimulation

Electrical stimulation of peripheral nerves via implanted electrodes has been shown to be a promising approach to restore sensation, movement, and autonomic functions across a wide range of illnesses and injuries. While in principle computational models of neuromodulation can allow the exploration of large parameter spaces and the automatic optimization of stimulation devices and strategies, their high time complexity hinders their use on a large scale. We recently proposed the use of machine learning-based surrogate models to estimate the activation of nerve fibers under electrical stimulation, producing a considerable speed-up with respect to biophysically accurate models of fiber excitation while retaining good predictivity. Here, we characterize the performance of four frequently employed machine learning algorithms and provide an illustrative example of their ability to generalize to unseen stimulation protocols, stimulating sites, and nerve sections. We then discuss how the ability to generalize to such scenarios is relevant to different optimization protocols, paving the way for the automatic optimization of neuromodulation applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioelectromagnetics
Bioelectromagnetics 生物-生物物理
CiteScore
4.60
自引率
0.00%
发文量
44
审稿时长
6-12 weeks
期刊介绍: Bioelectromagnetics is published by Wiley-Liss, Inc., for the Bioelectromagnetics Society and is the official journal of the Bioelectromagnetics Society and the European Bioelectromagnetics Association. It is a peer-reviewed, internationally circulated scientific journal that specializes in reporting original data on biological effects and applications of electromagnetic fields that range in frequency from zero hertz (static fields) to the terahertz undulations and visible light. Both experimental and clinical data are of interest to the journal''s readers as are theoretical papers or reviews that offer novel insights into or criticism of contemporary concepts and theories of field-body interactions. The Bioelectromagnetics Society, which sponsors the journal, also welcomes experimental or clinical papers on the domains of sonic and ultrasonic radiation.
期刊最新文献
Issue Information Recent Advances and Future Perspective in Computational Bioelectromagnetics for Exposure Assessments Recommendations for the Safe Application of Temporal Interference Stimulation in the Human Brain Part I: Principles of Electrical Neuromodulation and Adverse Effects Impact of Microwave Exposure on Cynomolgus Monkeys: EEG and ECG Analysis Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1