Iman E Taha, Mahmoud A ElSohly, Mohamed M Radwan, Rasha M Elkanayati, Amira Wanas, Poorva H Joshi, Eman A Ashour
{"title":"通过开发纳米结构脂质载体提高大麻二酚口服生物利用度:体外和体内评估研究。","authors":"Iman E Taha, Mahmoud A ElSohly, Mohamed M Radwan, Rasha M Elkanayati, Amira Wanas, Poorva H Joshi, Eman A Ashour","doi":"10.1007/s13346-024-01766-9","DOIUrl":null,"url":null,"abstract":"<p><p>Cannabidiol (CBD) is a natural product isolated from the Cannabis sativa plant that was approved by the United States Food and Drug Administration (US FDA) for the treatment of resistant epilepsy. Despite its therapeutic potential, CBD's clinical application is limited by its poor aqueous solubility and low oral bioavailability. The primary aim of this research was to enhance the aqueous solubility and oral bioavailability of CBD by developing nanostructured lipid carriers (NLCs) using conventional hot homogenization method (CHH). In the current study, nine CBD NLC formulations were developed through CHH, of which, NLC5 emerged as the most promising formulation, exhibiting high CBD entrapment efficiency (99.23%), particle size of 207 nm, a polydispersity index of 0.19, and a zeta potential of -26 mV. Additionally, drug release testing for NLC5 showed a high CBD release rate of more than 90% within 15 min, indicating an enhancement of CBD dissolving rate compared to pure CBD. The in vivo pharmacokinetic study of NLC5 formulation showed 27% CBD oral bioavailability. Furthermore, Stability studies conducted at 4 °C and 25 °C on this formulation over three months, revealed consistent parameters, underscoring the robustness of the formulation. In conclusion, the successful formulation of CBD-loaded NLCs resulted in improved CBD release rate, enhanced oral bioavailability of CBD, and maintained stability, making it a promising approach for the effective delivery of CBD.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancement of cannabidiol oral bioavailability through the development of nanostructured lipid carriers: In vitro and in vivo evaluation studies.\",\"authors\":\"Iman E Taha, Mahmoud A ElSohly, Mohamed M Radwan, Rasha M Elkanayati, Amira Wanas, Poorva H Joshi, Eman A Ashour\",\"doi\":\"10.1007/s13346-024-01766-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cannabidiol (CBD) is a natural product isolated from the Cannabis sativa plant that was approved by the United States Food and Drug Administration (US FDA) for the treatment of resistant epilepsy. Despite its therapeutic potential, CBD's clinical application is limited by its poor aqueous solubility and low oral bioavailability. The primary aim of this research was to enhance the aqueous solubility and oral bioavailability of CBD by developing nanostructured lipid carriers (NLCs) using conventional hot homogenization method (CHH). In the current study, nine CBD NLC formulations were developed through CHH, of which, NLC5 emerged as the most promising formulation, exhibiting high CBD entrapment efficiency (99.23%), particle size of 207 nm, a polydispersity index of 0.19, and a zeta potential of -26 mV. Additionally, drug release testing for NLC5 showed a high CBD release rate of more than 90% within 15 min, indicating an enhancement of CBD dissolving rate compared to pure CBD. The in vivo pharmacokinetic study of NLC5 formulation showed 27% CBD oral bioavailability. Furthermore, Stability studies conducted at 4 °C and 25 °C on this formulation over three months, revealed consistent parameters, underscoring the robustness of the formulation. In conclusion, the successful formulation of CBD-loaded NLCs resulted in improved CBD release rate, enhanced oral bioavailability of CBD, and maintained stability, making it a promising approach for the effective delivery of CBD.</p>\",\"PeriodicalId\":11357,\"journal\":{\"name\":\"Drug Delivery and Translational Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Delivery and Translational Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13346-024-01766-9\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery and Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13346-024-01766-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Enhancement of cannabidiol oral bioavailability through the development of nanostructured lipid carriers: In vitro and in vivo evaluation studies.
Cannabidiol (CBD) is a natural product isolated from the Cannabis sativa plant that was approved by the United States Food and Drug Administration (US FDA) for the treatment of resistant epilepsy. Despite its therapeutic potential, CBD's clinical application is limited by its poor aqueous solubility and low oral bioavailability. The primary aim of this research was to enhance the aqueous solubility and oral bioavailability of CBD by developing nanostructured lipid carriers (NLCs) using conventional hot homogenization method (CHH). In the current study, nine CBD NLC formulations were developed through CHH, of which, NLC5 emerged as the most promising formulation, exhibiting high CBD entrapment efficiency (99.23%), particle size of 207 nm, a polydispersity index of 0.19, and a zeta potential of -26 mV. Additionally, drug release testing for NLC5 showed a high CBD release rate of more than 90% within 15 min, indicating an enhancement of CBD dissolving rate compared to pure CBD. The in vivo pharmacokinetic study of NLC5 formulation showed 27% CBD oral bioavailability. Furthermore, Stability studies conducted at 4 °C and 25 °C on this formulation over three months, revealed consistent parameters, underscoring the robustness of the formulation. In conclusion, the successful formulation of CBD-loaded NLCs resulted in improved CBD release rate, enhanced oral bioavailability of CBD, and maintained stability, making it a promising approach for the effective delivery of CBD.
期刊介绍:
The journal provides a unique forum for scientific publication of high-quality research that is exclusively focused on translational aspects of drug delivery. Rationally developed, effective delivery systems can potentially affect clinical outcome in different disease conditions.
Research focused on the following areas of translational drug delivery research will be considered for publication in the journal.
Designing and developing novel drug delivery systems, with a focus on their application to disease conditions;
Preclinical and clinical data related to drug delivery systems;
Drug distribution, pharmacokinetics, clearance, with drug delivery systems as compared to traditional dosing to demonstrate beneficial outcomes
Short-term and long-term biocompatibility of drug delivery systems, host response;
Biomaterials with growth factors for stem-cell differentiation in regenerative medicine and tissue engineering;
Image-guided drug therapy,
Nanomedicine;
Devices for drug delivery and drug/device combination products.
In addition to original full-length papers, communications, and reviews, the journal includes editorials, reports of future meetings, research highlights, and announcements pertaining to the activities of the Controlled Release Society.