超高剂量率氦离子束:最大限度减少脑组织损伤,同时保持肿瘤控制。

IF 5.3 2区 医学 Q1 ONCOLOGY Molecular Cancer Therapeutics Pub Date : 2024-12-31 DOI:10.1158/1535-7163.MCT-24-0536
Ivana Dokic, Mahmoud Moustafa, Thomas Tessonnier, Sarah Meister, Federica Ciamarone, Mahdi Akbarpour, Damir Krunic, Thomas Haberer, Jürgen Debus, Andrea Mairani, Amir Abdollahi
{"title":"超高剂量率氦离子束:最大限度减少脑组织损伤,同时保持肿瘤控制。","authors":"Ivana Dokic, Mahmoud Moustafa, Thomas Tessonnier, Sarah Meister, Federica Ciamarone, Mahdi Akbarpour, Damir Krunic, Thomas Haberer, Jürgen Debus, Andrea Mairani, Amir Abdollahi","doi":"10.1158/1535-7163.MCT-24-0536","DOIUrl":null,"url":null,"abstract":"<p><p>Ultra-high dose rate radiotherapy with electrons and protons has shown potential for cancer treatment by effectively targeting tumors while sparing healthy tissues (FLASH effect). This study aimed to investigate the potential FLASH sparing effect of ultra-high-dose rate helium ion irradiation, focusing on acute brain injury and subcutaneous tumor response in a preclinical in vivo setting. Raster-scanned helium ion beams were used to compare the effects of standard dose rate (SDR at 0.2 Gy/s) and FLASH (at 141 Gy/s) radiotherapy on healthy brain tissue. Irradiation-induced brain injury was studied in C57BL/6 mice via DNA damage response, using nuclear γH2AX as a marker for double-strand breaks (DSB). The integrity of neurovascular and immune compartments was assessed through CD31+ microvascular density and activation of microglia/macrophages. Iba1+ ramified and CD68+ phagocytic microglia/macrophages were quantified, along with the expression of inducible nitric oxide synthetase (iNOS). Tumor response to SDR (0.2 Gy/s) and FLASH (250 Gy/s) radiotherapy was evaluated in A549 carcinoma model, using tumor volume and Kaplan-Meier survival as endpoints. The results showed that helium FLASH radiotherapy significantly reduced acute brain tissue injury compared to SDR, evidenced by lower levels of DSB and preserved neurovascular endothelium. Additionally, FLASH radiotherapy reduced neuroinflammatory signals compared to SDR, as indicated by fewer CD68+ iNOS+ microglia/macrophages. FLASH radiotherapy achieved tumor control comparable to that of SDR radiotherapy. This study is the first to report the FLASH sparing effect of raster scanning helium ion radiotherapy in vivo, highlighting its potential for neuroprotection and effective tumor control.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra-High Dose Rate Helium Ion Beams: Minimizing Brain Tissue Damage while Preserving Tumor Control.\",\"authors\":\"Ivana Dokic, Mahmoud Moustafa, Thomas Tessonnier, Sarah Meister, Federica Ciamarone, Mahdi Akbarpour, Damir Krunic, Thomas Haberer, Jürgen Debus, Andrea Mairani, Amir Abdollahi\",\"doi\":\"10.1158/1535-7163.MCT-24-0536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ultra-high dose rate radiotherapy with electrons and protons has shown potential for cancer treatment by effectively targeting tumors while sparing healthy tissues (FLASH effect). This study aimed to investigate the potential FLASH sparing effect of ultra-high-dose rate helium ion irradiation, focusing on acute brain injury and subcutaneous tumor response in a preclinical in vivo setting. Raster-scanned helium ion beams were used to compare the effects of standard dose rate (SDR at 0.2 Gy/s) and FLASH (at 141 Gy/s) radiotherapy on healthy brain tissue. Irradiation-induced brain injury was studied in C57BL/6 mice via DNA damage response, using nuclear γH2AX as a marker for double-strand breaks (DSB). The integrity of neurovascular and immune compartments was assessed through CD31+ microvascular density and activation of microglia/macrophages. Iba1+ ramified and CD68+ phagocytic microglia/macrophages were quantified, along with the expression of inducible nitric oxide synthetase (iNOS). Tumor response to SDR (0.2 Gy/s) and FLASH (250 Gy/s) radiotherapy was evaluated in A549 carcinoma model, using tumor volume and Kaplan-Meier survival as endpoints. The results showed that helium FLASH radiotherapy significantly reduced acute brain tissue injury compared to SDR, evidenced by lower levels of DSB and preserved neurovascular endothelium. Additionally, FLASH radiotherapy reduced neuroinflammatory signals compared to SDR, as indicated by fewer CD68+ iNOS+ microglia/macrophages. FLASH radiotherapy achieved tumor control comparable to that of SDR radiotherapy. This study is the first to report the FLASH sparing effect of raster scanning helium ion radiotherapy in vivo, highlighting its potential for neuroprotection and effective tumor control.</p>\",\"PeriodicalId\":18791,\"journal\":{\"name\":\"Molecular Cancer Therapeutics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cancer Therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/1535-7163.MCT-24-0536\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1535-7163.MCT-24-0536","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

利用电子和质子进行的超高剂量率放射治疗在有效靶向肿瘤的同时保留健康组织(FLASH效应),显示出癌症治疗的潜力。本研究旨在研究超高剂量率氦离子照射对急性脑损伤和皮下肿瘤反应的潜在FLASH保护作用,重点研究临床前体内环境。采用栅格扫描氦离子束比较标准剂量率(SDR为0.2 Gy/s)和FLASH (141 Gy/s)放疗对健康脑组织的影响。以核γ - h2ax作为双链断裂(DSB)标记物,通过DNA损伤反应研究辐照致C57BL/6小鼠脑损伤。通过CD31+微血管密度和小胶质细胞/巨噬细胞的激活来评估神经血管和免疫室的完整性。定量Iba1+分支化和CD68+吞噬小胶质细胞/巨噬细胞,以及诱导型一氧化氮合成酶(iNOS)的表达。在A549癌模型中,以肿瘤体积和Kaplan-Meier生存期为终点,评估肿瘤对SDR (0.2 Gy/s)和FLASH (250 Gy/s)放疗的反应。结果显示,与SDR相比,氦FLASH放疗可显著减轻急性脑组织损伤,表现为DSB水平降低,神经血管内皮得以保存。此外,与SDR相比,FLASH放疗减少了神经炎症信号,这表明CD68+ iNOS+小胶质细胞/巨噬细胞较少。FLASH放疗对肿瘤的控制与SDR放疗相当。本研究首次报道了光栅扫描氦离子放疗在体内的FLASH节约效应,突出了其在神经保护和有效肿瘤控制方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ultra-High Dose Rate Helium Ion Beams: Minimizing Brain Tissue Damage while Preserving Tumor Control.

Ultra-high dose rate radiotherapy with electrons and protons has shown potential for cancer treatment by effectively targeting tumors while sparing healthy tissues (FLASH effect). This study aimed to investigate the potential FLASH sparing effect of ultra-high-dose rate helium ion irradiation, focusing on acute brain injury and subcutaneous tumor response in a preclinical in vivo setting. Raster-scanned helium ion beams were used to compare the effects of standard dose rate (SDR at 0.2 Gy/s) and FLASH (at 141 Gy/s) radiotherapy on healthy brain tissue. Irradiation-induced brain injury was studied in C57BL/6 mice via DNA damage response, using nuclear γH2AX as a marker for double-strand breaks (DSB). The integrity of neurovascular and immune compartments was assessed through CD31+ microvascular density and activation of microglia/macrophages. Iba1+ ramified and CD68+ phagocytic microglia/macrophages were quantified, along with the expression of inducible nitric oxide synthetase (iNOS). Tumor response to SDR (0.2 Gy/s) and FLASH (250 Gy/s) radiotherapy was evaluated in A549 carcinoma model, using tumor volume and Kaplan-Meier survival as endpoints. The results showed that helium FLASH radiotherapy significantly reduced acute brain tissue injury compared to SDR, evidenced by lower levels of DSB and preserved neurovascular endothelium. Additionally, FLASH radiotherapy reduced neuroinflammatory signals compared to SDR, as indicated by fewer CD68+ iNOS+ microglia/macrophages. FLASH radiotherapy achieved tumor control comparable to that of SDR radiotherapy. This study is the first to report the FLASH sparing effect of raster scanning helium ion radiotherapy in vivo, highlighting its potential for neuroprotection and effective tumor control.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.20
自引率
1.80%
发文量
331
审稿时长
3 months
期刊介绍: Molecular Cancer Therapeutics will focus on basic research that has implications for cancer therapeutics in the following areas: Experimental Cancer Therapeutics, Identification of Molecular Targets, Targets for Chemoprevention, New Models, Cancer Chemistry and Drug Discovery, Molecular and Cellular Pharmacology, Molecular Classification of Tumors, and Bioinformatics and Computational Molecular Biology. The journal provides a publication forum for these emerging disciplines that is focused specifically on cancer research. Papers are stringently reviewed and only those that report results of novel, timely, and significant research and meet high standards of scientific merit will be accepted for publication.
期刊最新文献
Identification of a TNIK-CDK9 axis as a targetable strategy for platinum-resistant ovarian cancer. LIG1 is a synthetic lethal target in BRCA1 mutant cancers. VAX014 Activates Tumor-Intrinsic STING and RIG-I to Promote the Development of Antitumor Immunity. Co-blocking TIGIT and PVRIG using a novel bispecific antibody enhances anti-tumor immunity. PI3K/mTOR dual inhibitor GSK458 and arsenic trioxide exert synergistic anti-tumor effects against ovarian clear cell carcinoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1