光学镊子研究病毒。

Q1 Biochemistry, Genetics and Molecular Biology Sub-cellular biochemistry Pub Date : 2024-01-01 DOI:10.1007/978-3-031-65187-8_10
J Ricardo Arias-Gonzalez
{"title":"光学镊子研究病毒。","authors":"J Ricardo Arias-Gonzalez","doi":"10.1007/978-3-031-65187-8_10","DOIUrl":null,"url":null,"abstract":"<p><p>A virus is a complex molecular machine that propagates by channeling its genetic information from cell to cell. Unlike macroscopic engines, it operates in a nanoscopic world under continuous thermal agitation. Viruses have developed efficient passive and active strategies to pack and release nucleic acids. Some aspects of the dynamic behavior of viruses and their substrates can be studied using structural and biochemical techniques. By the turn of the millennium, physical techniques have been applied to dynamic studies of viruses in which their intrinsic mechanical activity can be measured directly. Optical tweezers are a technology that can be used to measure the force, torque, and strain produced by molecular motors, as a function of time and at the single-molecule level. Thanks to this technique, some bacteriophages are now known to be powerful nanomachines; they exert force in the piconewton range and their motors work in a highly coordinated fashion for packaging the viral nucleic acid genome. Nucleic acids, whose elasticity and condensation behavior are inherently coupled to the viral packaging mechanisms, virion assembly, and virion-cell interactions are also amenable to examination with optical tweezers. In this chapter, we provide a comprehensive analysis of this laser-based tool, its combination with imaging methods, and its application to the study of viruses and viral molecules.</p>","PeriodicalId":21991,"journal":{"name":"Sub-cellular biochemistry","volume":"105 ","pages":"359-399"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical Tweezers to Study Viruses.\",\"authors\":\"J Ricardo Arias-Gonzalez\",\"doi\":\"10.1007/978-3-031-65187-8_10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A virus is a complex molecular machine that propagates by channeling its genetic information from cell to cell. Unlike macroscopic engines, it operates in a nanoscopic world under continuous thermal agitation. Viruses have developed efficient passive and active strategies to pack and release nucleic acids. Some aspects of the dynamic behavior of viruses and their substrates can be studied using structural and biochemical techniques. By the turn of the millennium, physical techniques have been applied to dynamic studies of viruses in which their intrinsic mechanical activity can be measured directly. Optical tweezers are a technology that can be used to measure the force, torque, and strain produced by molecular motors, as a function of time and at the single-molecule level. Thanks to this technique, some bacteriophages are now known to be powerful nanomachines; they exert force in the piconewton range and their motors work in a highly coordinated fashion for packaging the viral nucleic acid genome. Nucleic acids, whose elasticity and condensation behavior are inherently coupled to the viral packaging mechanisms, virion assembly, and virion-cell interactions are also amenable to examination with optical tweezers. In this chapter, we provide a comprehensive analysis of this laser-based tool, its combination with imaging methods, and its application to the study of viruses and viral molecules.</p>\",\"PeriodicalId\":21991,\"journal\":{\"name\":\"Sub-cellular biochemistry\",\"volume\":\"105 \",\"pages\":\"359-399\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sub-cellular biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-65187-8_10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sub-cellular biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-65187-8_10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

病毒是一种复杂的分子机器,它通过将遗传信息从一个细胞传递到另一个细胞来传播。与宏观发动机不同的是,它在纳米级的世界中持续的热搅拌下运行。病毒已经发展出有效的被动和主动策略来包装和释放核酸。病毒及其底物的动态行为的某些方面可以使用结构和生化技术进行研究。在世纪之交,物理技术已被应用于病毒的动态研究,可以直接测量其内在的机械活动。光镊是一种技术,可用于测量分子马达产生的力、扭矩和应变,作为时间和单分子水平的函数。多亏了这项技术,一些噬菌体现在被认为是强大的纳米机器;它们在皮牛顿范围内施加力,它们的马达以高度协调的方式工作,以包装病毒核酸基因组。核酸的弹性和凝聚行为与病毒包装机制、病毒粒子组装和病毒粒子-细胞相互作用内在地耦合在一起,因此也可以用光学镊子进行检测。在本章中,我们全面分析了这种基于激光的工具,它与成像方法的结合,以及它在病毒和病毒分子研究中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optical Tweezers to Study Viruses.

A virus is a complex molecular machine that propagates by channeling its genetic information from cell to cell. Unlike macroscopic engines, it operates in a nanoscopic world under continuous thermal agitation. Viruses have developed efficient passive and active strategies to pack and release nucleic acids. Some aspects of the dynamic behavior of viruses and their substrates can be studied using structural and biochemical techniques. By the turn of the millennium, physical techniques have been applied to dynamic studies of viruses in which their intrinsic mechanical activity can be measured directly. Optical tweezers are a technology that can be used to measure the force, torque, and strain produced by molecular motors, as a function of time and at the single-molecule level. Thanks to this technique, some bacteriophages are now known to be powerful nanomachines; they exert force in the piconewton range and their motors work in a highly coordinated fashion for packaging the viral nucleic acid genome. Nucleic acids, whose elasticity and condensation behavior are inherently coupled to the viral packaging mechanisms, virion assembly, and virion-cell interactions are also amenable to examination with optical tweezers. In this chapter, we provide a comprehensive analysis of this laser-based tool, its combination with imaging methods, and its application to the study of viruses and viral molecules.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sub-cellular biochemistry
Sub-cellular biochemistry Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
5.90
自引率
0.00%
发文量
33
期刊介绍: The book series SUBCELLULAR BIOCHEMISTRY is a renowned and well recognized forum for disseminating advances of emerging topics in Cell Biology and related subjects. All volumes are edited by established scientists and the individual chapters are written by experts on the relevant topic. The individual chapters of each volume are fully citable and indexed in Medline/Pubmed to ensure maximum visibility of the work.
期刊最新文献
Basic Epigenetic Mechanisms. Environmental Enrichment and Epigenetic Changes in the Brain: From the Outside to the Deep Inside. Epigenetic Control in Schizophrenia. Epigenetics in Learning and Memory. Epigenetics in Neurodegenerative Diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1