{"title":"基于单幅图像的个性化人体模型快速建模框架。","authors":"Qiuqi Yuan, Zhi Xiao, Xiaoming Zhu, Bin Li, Jingzhou Hu, Yunfei Niu, Shiwei Xu","doi":"10.1007/s11517-024-03267-w","DOIUrl":null,"url":null,"abstract":"<p><p>Finite element human body models (HBMs) are the primary method for predicting human biological responses in vehicle collisions, especially personalized HBMs that allow accounting for diverse populations. Yet, creating personalized HBMs from a single image is a challenging task. This study addresses this challenge by providing a framework for HBM personalization, starting from a single image used to estimate the subject's skin point cloud, the skeletal point cloud, and the relative positions of the skeletons. Personalized HBMs were created by morphing the baseline HBM accounting skin and skeleton point clouds using a point cloud registration-based mesh morphing method. Using this framework, eight personalized HBMs with various biological characteristics (e.g., sex, height, and weight) were created, with comparable element quality to the baseline HBM. The mean geometric errors of the personalized FEMs generated by the framework are less than 7 mm, which was found to be acceptable based on biomechanical response evaluations conducted in this study.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fast-modeling framework for personalized human body models based on a single image.\",\"authors\":\"Qiuqi Yuan, Zhi Xiao, Xiaoming Zhu, Bin Li, Jingzhou Hu, Yunfei Niu, Shiwei Xu\",\"doi\":\"10.1007/s11517-024-03267-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Finite element human body models (HBMs) are the primary method for predicting human biological responses in vehicle collisions, especially personalized HBMs that allow accounting for diverse populations. Yet, creating personalized HBMs from a single image is a challenging task. This study addresses this challenge by providing a framework for HBM personalization, starting from a single image used to estimate the subject's skin point cloud, the skeletal point cloud, and the relative positions of the skeletons. Personalized HBMs were created by morphing the baseline HBM accounting skin and skeleton point clouds using a point cloud registration-based mesh morphing method. Using this framework, eight personalized HBMs with various biological characteristics (e.g., sex, height, and weight) were created, with comparable element quality to the baseline HBM. The mean geometric errors of the personalized FEMs generated by the framework are less than 7 mm, which was found to be acceptable based on biomechanical response evaluations conducted in this study.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-024-03267-w\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03267-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A fast-modeling framework for personalized human body models based on a single image.
Finite element human body models (HBMs) are the primary method for predicting human biological responses in vehicle collisions, especially personalized HBMs that allow accounting for diverse populations. Yet, creating personalized HBMs from a single image is a challenging task. This study addresses this challenge by providing a framework for HBM personalization, starting from a single image used to estimate the subject's skin point cloud, the skeletal point cloud, and the relative positions of the skeletons. Personalized HBMs were created by morphing the baseline HBM accounting skin and skeleton point clouds using a point cloud registration-based mesh morphing method. Using this framework, eight personalized HBMs with various biological characteristics (e.g., sex, height, and weight) were created, with comparable element quality to the baseline HBM. The mean geometric errors of the personalized FEMs generated by the framework are less than 7 mm, which was found to be acceptable based on biomechanical response evaluations conducted in this study.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).