心脏巨噬细胞在健康和疾病中的功能多样性

IF 41.7 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Nature Reviews Cardiology Pub Date : 2025-01-02 DOI:10.1038/s41569-024-01109-8
Steven Yang, Vinay Penna, Kory J. Lavine
{"title":"心脏巨噬细胞在健康和疾病中的功能多样性","authors":"Steven Yang, Vinay Penna, Kory J. Lavine","doi":"10.1038/s41569-024-01109-8","DOIUrl":null,"url":null,"abstract":"<p>Macrophages make up a substantial portion of the stromal compartment of the heart in health and disease. In the past decade, the origins of these cardiac macrophages have been established as two broad populations derived from either embryonic or definitive haematopoiesis and that can be distinguished by the expression of CC-motif chemokine receptor 2 (CCR2). These cardiac macrophage populations are transcriptionally distinct and have differing cell surface markers and divergent roles in cardiac homeostasis and disease. Embryonic-derived CCR2<sup>−</sup> macrophages are a tissue-resident population that participates in tissue development, repair and maintenance, whereas CCR2<sup>+</sup> macrophages are derived from definitive haematopoiesis and contribute to inflammation and tissue damage. Studies from the past 5 years have leveraged single-cell RNA sequencing technologies to expand our understanding of cardiac macrophage diversity, particularly of the monocyte-derived macrophage populations that reside in the injured and diseased heart. Emerging technologies in spatial transcriptomics have enabled the identification of distinct disease-associated cellular neighbourhoods consisting of macrophages, other immune cells and fibroblasts, highlighting the involvement of macrophages in cell–cell communication. Together, these discoveries lend new insights into the role of specific macrophage populations in the pathogenesis of cardiac disease, which can pave the way for the identification of new therapeutic targets and the development of diagnostic tools. In this Review, we discuss the developmental origin of cardiac macrophages and describe newly identified cell states and associated cellular neighbourhoods in the steady state and injury settings. We also discuss various contributions and effector functions of cardiac macrophages in homeostasis and disease.</p>","PeriodicalId":18976,"journal":{"name":"Nature Reviews Cardiology","volume":"29 1","pages":""},"PeriodicalIF":41.7000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional diversity of cardiac macrophages in health and disease\",\"authors\":\"Steven Yang, Vinay Penna, Kory J. Lavine\",\"doi\":\"10.1038/s41569-024-01109-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Macrophages make up a substantial portion of the stromal compartment of the heart in health and disease. In the past decade, the origins of these cardiac macrophages have been established as two broad populations derived from either embryonic or definitive haematopoiesis and that can be distinguished by the expression of CC-motif chemokine receptor 2 (CCR2). These cardiac macrophage populations are transcriptionally distinct and have differing cell surface markers and divergent roles in cardiac homeostasis and disease. Embryonic-derived CCR2<sup>−</sup> macrophages are a tissue-resident population that participates in tissue development, repair and maintenance, whereas CCR2<sup>+</sup> macrophages are derived from definitive haematopoiesis and contribute to inflammation and tissue damage. Studies from the past 5 years have leveraged single-cell RNA sequencing technologies to expand our understanding of cardiac macrophage diversity, particularly of the monocyte-derived macrophage populations that reside in the injured and diseased heart. Emerging technologies in spatial transcriptomics have enabled the identification of distinct disease-associated cellular neighbourhoods consisting of macrophages, other immune cells and fibroblasts, highlighting the involvement of macrophages in cell–cell communication. Together, these discoveries lend new insights into the role of specific macrophage populations in the pathogenesis of cardiac disease, which can pave the way for the identification of new therapeutic targets and the development of diagnostic tools. In this Review, we discuss the developmental origin of cardiac macrophages and describe newly identified cell states and associated cellular neighbourhoods in the steady state and injury settings. We also discuss various contributions and effector functions of cardiac macrophages in homeostasis and disease.</p>\",\"PeriodicalId\":18976,\"journal\":{\"name\":\"Nature Reviews Cardiology\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":41.7000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Cardiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41569-024-01109-8\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Cardiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41569-024-01109-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在健康和疾病中,巨噬细胞构成了心脏间质室的很大一部分。在过去的十年中,这些心脏巨噬细胞的起源已经被确定为来自胚胎或最终造血的两大群体,并且可以通过cc基序趋化因子受体2 (CCR2)的表达来区分。这些心脏巨噬细胞群在转录上是不同的,具有不同的细胞表面标记,在心脏稳态和疾病中发挥不同的作用。胚胎来源的CCR2−巨噬细胞是参与组织发育、修复和维持的组织常驻细胞群,而CCR2+巨噬细胞来源于最终的造血,并有助于炎症和组织损伤。过去5年的研究利用单细胞RNA测序技术扩大了我们对心脏巨噬细胞多样性的理解,特别是对居住在受伤和患病心脏中的单核细胞来源的巨噬细胞群体的理解。空间转录组学的新兴技术已经能够识别由巨噬细胞、其他免疫细胞和成纤维细胞组成的不同的疾病相关细胞邻域,突出了巨噬细胞在细胞间通讯中的作用。总之,这些发现为特定巨噬细胞群体在心脏病发病机制中的作用提供了新的见解,这可以为确定新的治疗靶点和开发诊断工具铺平道路。在这篇综述中,我们讨论了心脏巨噬细胞的发育起源,并描述了在稳态和损伤环境下新发现的细胞状态和相关的细胞邻域。我们还讨论了心脏巨噬细胞在稳态和疾病中的各种贡献和效应功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Functional diversity of cardiac macrophages in health and disease

Macrophages make up a substantial portion of the stromal compartment of the heart in health and disease. In the past decade, the origins of these cardiac macrophages have been established as two broad populations derived from either embryonic or definitive haematopoiesis and that can be distinguished by the expression of CC-motif chemokine receptor 2 (CCR2). These cardiac macrophage populations are transcriptionally distinct and have differing cell surface markers and divergent roles in cardiac homeostasis and disease. Embryonic-derived CCR2 macrophages are a tissue-resident population that participates in tissue development, repair and maintenance, whereas CCR2+ macrophages are derived from definitive haematopoiesis and contribute to inflammation and tissue damage. Studies from the past 5 years have leveraged single-cell RNA sequencing technologies to expand our understanding of cardiac macrophage diversity, particularly of the monocyte-derived macrophage populations that reside in the injured and diseased heart. Emerging technologies in spatial transcriptomics have enabled the identification of distinct disease-associated cellular neighbourhoods consisting of macrophages, other immune cells and fibroblasts, highlighting the involvement of macrophages in cell–cell communication. Together, these discoveries lend new insights into the role of specific macrophage populations in the pathogenesis of cardiac disease, which can pave the way for the identification of new therapeutic targets and the development of diagnostic tools. In this Review, we discuss the developmental origin of cardiac macrophages and describe newly identified cell states and associated cellular neighbourhoods in the steady state and injury settings. We also discuss various contributions and effector functions of cardiac macrophages in homeostasis and disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Reviews Cardiology
Nature Reviews Cardiology 医学-心血管系统
CiteScore
53.10
自引率
0.60%
发文量
143
审稿时长
6-12 weeks
期刊介绍: Nature Reviews Cardiology aims to be the go-to source for reviews and commentaries in the scientific and clinical communities it serves. Focused on providing authoritative and accessible articles enriched with clear figures and tables, the journal strives to offer unparalleled service to authors, referees, and readers, maximizing the usefulness and impact of each publication. It covers a broad range of content types, including Research Highlights, Comments, News & Views, Reviews, Consensus Statements, and Perspectives, catering to practising cardiologists and cardiovascular research scientists. Authored by renowned clinicians, academics, and researchers, the content targets readers in the biological and medical sciences, ensuring accessibility across various disciplines. In-depth Reviews offer up-to-date information, while Consensus Statements provide evidence-based recommendations. Perspectives and News & Views present topical discussions and opinions, and the Research Highlights section filters primary research from cardiovascular and general medical journals. As part of the Nature Reviews portfolio, Nature Reviews Cardiology maintains high standards and a wide reach.
期刊最新文献
Salt sensitivity of blood pressure: mechanisms and sex-specific differences Roadmap for alleviating the manifestations of ageing in the cardiovascular system Wearable blood pressure sensors for cardiovascular monitoring and machine learning algorithms for blood pressure estimation Clinical implications of perioperative and periprocedural myocardial infarction Author Correction: Traction force microscopy of cardiomyocytes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1