Robrecht Van Der Bauwhede, Leon van den Berg, Karen Vancampenhout, Erik Smolders, Bart Muys
{"title":"野外植物计和实验室试验表明,岩石粉尘在酸性森林土壤恢复方面的效果优于白云石和肥料","authors":"Robrecht Van Der Bauwhede, Leon van den Berg, Karen Vancampenhout, Erik Smolders, Bart Muys","doi":"10.1007/s11104-024-07175-8","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background and aims</h3><p>Soil amendments with rock dust have been proposed for restoring regeneration on ultra-acidified forest soils. Rock dust is a poorly defined amendment, and its mode of action remains unclear. This study was set up to identify rock dust properties that predict plant responses in the field.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>A field experiment with sycamore maple (<i>Acer pseudoplatanus</i> L.) saplings in two sites in the Campine region (NL) was constructed, both at a clearcut (soil pH = 3.5) and under the canopy of <i>Pinus sylvestris</i> L. (pH = 3.1). Treatments included six rock dusts and four reference treatments (TSP, dolomite, KCl, their combination). Rock dusts were amended in the planting pit and broadcast after being characterised for chemical composition and tested for dissolution in accelerated laboratory tests. Sapling growth was monitored for 40 months.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Tree growth was affected by the site and rock dust type. The highest tree volume increases relative to the unamended control were with phonolite that increased volume by a factor 2 (clearcut) and by a factor 8 (under-canopy). On the clearcut, these increases were larger than the reference conventional dolomite and fertilisation treatments. Here, growth was only explained by rock dust’s water retention, which was superior for a zeolite-containing rock dust. Under-canopy, both growth and foliar nutrition were best related to liming and nutrient release by rock dust inferred from an 8-week laboratory-based soil + rock dust suspension test.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>Rock dusts are effective to regenerate acid forest soils and laboratory tests of accelerated weathering can inform their potential.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"35 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Field phytometers and lab tests demonstrate that rock dust can outperform dolomite and fertilisers for acid forest soil restoration\",\"authors\":\"Robrecht Van Der Bauwhede, Leon van den Berg, Karen Vancampenhout, Erik Smolders, Bart Muys\",\"doi\":\"10.1007/s11104-024-07175-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Background and aims</h3><p>Soil amendments with rock dust have been proposed for restoring regeneration on ultra-acidified forest soils. Rock dust is a poorly defined amendment, and its mode of action remains unclear. This study was set up to identify rock dust properties that predict plant responses in the field.</p><h3 data-test=\\\"abstract-sub-heading\\\">Methods</h3><p>A field experiment with sycamore maple (<i>Acer pseudoplatanus</i> L.) saplings in two sites in the Campine region (NL) was constructed, both at a clearcut (soil pH = 3.5) and under the canopy of <i>Pinus sylvestris</i> L. (pH = 3.1). Treatments included six rock dusts and four reference treatments (TSP, dolomite, KCl, their combination). Rock dusts were amended in the planting pit and broadcast after being characterised for chemical composition and tested for dissolution in accelerated laboratory tests. Sapling growth was monitored for 40 months.</p><h3 data-test=\\\"abstract-sub-heading\\\">Results</h3><p>Tree growth was affected by the site and rock dust type. The highest tree volume increases relative to the unamended control were with phonolite that increased volume by a factor 2 (clearcut) and by a factor 8 (under-canopy). On the clearcut, these increases were larger than the reference conventional dolomite and fertilisation treatments. Here, growth was only explained by rock dust’s water retention, which was superior for a zeolite-containing rock dust. Under-canopy, both growth and foliar nutrition were best related to liming and nutrient release by rock dust inferred from an 8-week laboratory-based soil + rock dust suspension test.</p><h3 data-test=\\\"abstract-sub-heading\\\">Conclusion</h3><p>Rock dusts are effective to regenerate acid forest soils and laboratory tests of accelerated weathering can inform their potential.</p>\",\"PeriodicalId\":20223,\"journal\":{\"name\":\"Plant and Soil\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant and Soil\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11104-024-07175-8\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11104-024-07175-8","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Field phytometers and lab tests demonstrate that rock dust can outperform dolomite and fertilisers for acid forest soil restoration
Background and aims
Soil amendments with rock dust have been proposed for restoring regeneration on ultra-acidified forest soils. Rock dust is a poorly defined amendment, and its mode of action remains unclear. This study was set up to identify rock dust properties that predict plant responses in the field.
Methods
A field experiment with sycamore maple (Acer pseudoplatanus L.) saplings in two sites in the Campine region (NL) was constructed, both at a clearcut (soil pH = 3.5) and under the canopy of Pinus sylvestris L. (pH = 3.1). Treatments included six rock dusts and four reference treatments (TSP, dolomite, KCl, their combination). Rock dusts were amended in the planting pit and broadcast after being characterised for chemical composition and tested for dissolution in accelerated laboratory tests. Sapling growth was monitored for 40 months.
Results
Tree growth was affected by the site and rock dust type. The highest tree volume increases relative to the unamended control were with phonolite that increased volume by a factor 2 (clearcut) and by a factor 8 (under-canopy). On the clearcut, these increases were larger than the reference conventional dolomite and fertilisation treatments. Here, growth was only explained by rock dust’s water retention, which was superior for a zeolite-containing rock dust. Under-canopy, both growth and foliar nutrition were best related to liming and nutrient release by rock dust inferred from an 8-week laboratory-based soil + rock dust suspension test.
Conclusion
Rock dusts are effective to regenerate acid forest soils and laboratory tests of accelerated weathering can inform their potential.
期刊介绍:
Plant and Soil publishes original papers and review articles exploring the interface of plant biology and soil sciences, and that enhance our mechanistic understanding of plant-soil interactions. We focus on the interface of plant biology and soil sciences, and seek those manuscripts with a strong mechanistic component which develop and test hypotheses aimed at understanding underlying mechanisms of plant-soil interactions. Manuscripts can include both fundamental and applied aspects of mineral nutrition, plant water relations, symbiotic and pathogenic plant-microbe interactions, root anatomy and morphology, soil biology, ecology, agrochemistry and agrophysics, as long as they are hypothesis-driven and enhance our mechanistic understanding. Articles including a major molecular or modelling component also fall within the scope of the journal. All contributions appear in the English language, with consistent spelling, using either American or British English.