小而重要的生态系统工程师

IF 5.6 1区 农林科学 Q1 SOIL SCIENCE Geoderma Pub Date : 2024-12-30 DOI:10.1016/j.geoderma.2024.117150
Cécile Serbource, Stéphane Sammartino, Sophie Cornu, Justine Papillon, Jérôme Adrien, Céline Pelosi
{"title":"小而重要的生态系统工程师","authors":"Cécile Serbource, Stéphane Sammartino, Sophie Cornu, Justine Papillon, Jérôme Adrien, Céline Pelosi","doi":"10.1016/j.geoderma.2024.117150","DOIUrl":null,"url":null,"abstract":"Enchytraeids (Annelida Oligochaeta), small burrowing organisms found worldwide, are known to influence soil structure, though their specific effects on pore space are not well quantified. In this study, we evaluated how the burrowing activities of Enchytraeus albidus and Enchytraeus crypticus affected the X-ray imaged porosity of soil over a 40- day period using two different soils (loamy and silty-clay-loamy soil) sieved to 2 mm and packed at two bulk densities (0.8 and 1 g cm<ce:sup loc=\"post\">−3</ce:sup>). Our findings revealed that while enchytraeids had minimal impact on X-ray imaged porosity, they played a key role in reshaping the soil’s internal structure, increasing pore connectivity and homogenizing pore size distribution. This was evident through a reduction in the number of smaller pores and a shift toward larger pore sizes. The overall pore structure became more uniform, with enchytraeids promoting a shift in the dominant pore sizes. These structural changes were particularly pronounced in loosely compacted soils, where enchytraeids contributed to greater network complexity, as well as in the soil with a higher clay content, which is more conducive to aggregation. This suggests that enchytraeids have a significant role in modifying soil physical properties, especially in conditions where the soil is loosely compacted. X-ray microtomography is a promising tool for studying at the mesopore scale, and further studies are needed to better characterize the bioturbation activity of enchytraeids.","PeriodicalId":12511,"journal":{"name":"Geoderma","volume":"34 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enchytraeids: Small but important ecosystem engineers\",\"authors\":\"Cécile Serbource, Stéphane Sammartino, Sophie Cornu, Justine Papillon, Jérôme Adrien, Céline Pelosi\",\"doi\":\"10.1016/j.geoderma.2024.117150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Enchytraeids (Annelida Oligochaeta), small burrowing organisms found worldwide, are known to influence soil structure, though their specific effects on pore space are not well quantified. In this study, we evaluated how the burrowing activities of Enchytraeus albidus and Enchytraeus crypticus affected the X-ray imaged porosity of soil over a 40- day period using two different soils (loamy and silty-clay-loamy soil) sieved to 2 mm and packed at two bulk densities (0.8 and 1 g cm<ce:sup loc=\\\"post\\\">−3</ce:sup>). Our findings revealed that while enchytraeids had minimal impact on X-ray imaged porosity, they played a key role in reshaping the soil’s internal structure, increasing pore connectivity and homogenizing pore size distribution. This was evident through a reduction in the number of smaller pores and a shift toward larger pore sizes. The overall pore structure became more uniform, with enchytraeids promoting a shift in the dominant pore sizes. These structural changes were particularly pronounced in loosely compacted soils, where enchytraeids contributed to greater network complexity, as well as in the soil with a higher clay content, which is more conducive to aggregation. This suggests that enchytraeids have a significant role in modifying soil physical properties, especially in conditions where the soil is loosely compacted. X-ray microtomography is a promising tool for studying at the mesopore scale, and further studies are needed to better characterize the bioturbation activity of enchytraeids.\",\"PeriodicalId\":12511,\"journal\":{\"name\":\"Geoderma\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoderma\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.geoderma.2024.117150\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoderma","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.geoderma.2024.117150","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

腹足类(少毛纲环节动物)是一种在世界范围内发现的小型穴居生物,已知会影响土壤结构,尽管它们对孔隙空间的具体影响尚未得到很好的量化。在这项研究中,我们使用两种不同的土壤(壤土和粉质粘土-壤土)筛选到2毫米,并以两种堆积密度(0.8和1 g cm−3)进行包装,评估了长角蛭和隐芽蛭在40天内的挖洞活动如何影响土壤的x射线成像孔隙度。我们的研究结果表明,虽然蛭形体对x射线成像孔隙度的影响很小,但它们在重塑土壤内部结构、增加孔隙连通性和均匀化孔隙大小分布方面发挥了关键作用。这可以通过减少小孔隙的数量和向大孔隙的转变来证明。整体孔隙结构变得更加均匀,蛭形体促进了优势孔隙大小的转变。这些结构变化在松散压实的土壤中尤其明显,在那里,叶状体导致了更大的网络复杂性,在粘土含量较高的土壤中,这更有利于聚集。这表明内生体在改变土壤物理性质方面具有重要作用,特别是在土壤松散压实的条件下。x射线微断层扫描是一种很有前途的中孔尺度研究工具,需要进一步的研究来更好地表征内生虫的生物扰动活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enchytraeids: Small but important ecosystem engineers
Enchytraeids (Annelida Oligochaeta), small burrowing organisms found worldwide, are known to influence soil structure, though their specific effects on pore space are not well quantified. In this study, we evaluated how the burrowing activities of Enchytraeus albidus and Enchytraeus crypticus affected the X-ray imaged porosity of soil over a 40- day period using two different soils (loamy and silty-clay-loamy soil) sieved to 2 mm and packed at two bulk densities (0.8 and 1 g cm−3). Our findings revealed that while enchytraeids had minimal impact on X-ray imaged porosity, they played a key role in reshaping the soil’s internal structure, increasing pore connectivity and homogenizing pore size distribution. This was evident through a reduction in the number of smaller pores and a shift toward larger pore sizes. The overall pore structure became more uniform, with enchytraeids promoting a shift in the dominant pore sizes. These structural changes were particularly pronounced in loosely compacted soils, where enchytraeids contributed to greater network complexity, as well as in the soil with a higher clay content, which is more conducive to aggregation. This suggests that enchytraeids have a significant role in modifying soil physical properties, especially in conditions where the soil is loosely compacted. X-ray microtomography is a promising tool for studying at the mesopore scale, and further studies are needed to better characterize the bioturbation activity of enchytraeids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geoderma
Geoderma 农林科学-土壤科学
CiteScore
11.80
自引率
6.60%
发文量
597
审稿时长
58 days
期刊介绍: Geoderma - the global journal of soil science - welcomes authors, readers and soil research from all parts of the world, encourages worldwide soil studies, and embraces all aspects of soil science and its associated pedagogy. The journal particularly welcomes interdisciplinary work focusing on dynamic soil processes and functions across space and time.
期刊最新文献
Seasonal soil water origins and determinants in an alpine hillslope on the northeastern Qinghai-Tibet Plateau Low-severity wildfire prevents catastrophic impacts on fungal communities and soil carbon stability in a fire-affected Douglas-fir ecosystem Thermogravimetric data suggest synergy between different organic fractions and clay in soil structure formation Rhizodeposition stimulates soil carbon decomposition and promotes formation of mineral-associated carbon with increased clay content Mycorrhizal and nutrient controls of carbon sequestration in tropical rainforest soil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1