Xavier Palard-Novello, Rutger B. Henrar, Daniela E. Oprea-Lager, Matthijs C. F. Cysouw, Patrick Schober, Lioe-Fee de Geus-Oei, Alexander L. Vahrmeijer, Harry Hendrikse, Geert Kazemier, Marijke den Hollander, Robert C. Schuit, Albert D. Windhorst, Ronald Boellaard, Rutger-Jan Swijnenburg, Maqsood Yaqub
{"title":"LAFOV PET/CT分析胰胆癌患者[68Ga]Ga-FAPI-46摄取的完全定量和简化方法的评估","authors":"Xavier Palard-Novello, Rutger B. Henrar, Daniela E. Oprea-Lager, Matthijs C. F. Cysouw, Patrick Schober, Lioe-Fee de Geus-Oei, Alexander L. Vahrmeijer, Harry Hendrikse, Geert Kazemier, Marijke den Hollander, Robert C. Schuit, Albert D. Windhorst, Ronald Boellaard, Rutger-Jan Swijnenburg, Maqsood Yaqub","doi":"10.1007/s00259-024-07037-6","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>The aim of this study was to validate simplified methods for quantifying [<sup>68</sup>Ga]Ga-FAPI-46 uptake against full pharmacokinetic modeling.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>Ten patients with pancreatobiliary cancer underwent a 90-min dynamic PET/CT scan using a long axial field of view system. Arterial blood samples were used to establish calibrated plasma-input function from both continuous arterial sampling and image-derived input function (IDIF). Lesional [<sup>68</sup>Ga]Ga-FAPI-46 kinetics were described using conventional non-linear plasma-input tissue-compartment models. Logan plots using 30–90 min and 30–60 min post-injection (p.i), image-based target-to-whole blood ratio (TBR), mean standardized uptake values (SUVmean) normalized to body weight, lean body mass, and body surface area, at 20–30 min, 60–70 min and 80–90 min p.i were assessed.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>One patient was excluded due to discontinued scan acquisition and missing arterial sampling. Thirteen tumoral lesions and 11 non-tumoral lesions were included. A reversible 2-tissue-compartment model showed most preferrable fits for all types of [<sup>68</sup>Ga]Ga-FAPI-46 positive lesions. The distribution volume (V<sub>T</sub>) results obtained using arterial sampling plasma-input function and those using plasma-IDIF (V<sub>T_plasma_IDIF</sub>) showed an excellent correlation (Spearman rank correlation coefficient (r<sub>s</sub>) = 0.949). Logan V<sub>T</sub> using both time intervals were highly correlated with V<sub>T_plasma_IDIF</sub> (r<sub>s</sub> ≥ 0.938). The correlation values with V<sub>T_plasma_IDIF</sub> for image-based TBR and SUVmean parameters were higher at 80–90 min (r<sub>s</sub> ≥ 0.839) and at 60–70 min (r<sub>s</sub> ≥ 0.835) p.i than at 20–30 min p.i (r<sub>s</sub> ≤ 0.774).</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>Image-based TBR and SUVmean at 60–70 min p.i are suitable for quantifying [<sup>68</sup>Ga]Ga-FAPI-46 uptake.</p><h3 data-test=\"abstract-sub-heading\">Trial registration</h3><p>EudraCT, EudraCT 2022-001867-29. Registered 02 November 2022.</p>","PeriodicalId":11909,"journal":{"name":"European Journal of Nuclear Medicine and Molecular Imaging","volume":"14 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of fully quantitative and simplified methods for analysis of [68Ga]Ga-FAPI-46 uptake in patients with pancreatobiliary cancer using LAFOV PET/CT\",\"authors\":\"Xavier Palard-Novello, Rutger B. Henrar, Daniela E. Oprea-Lager, Matthijs C. F. Cysouw, Patrick Schober, Lioe-Fee de Geus-Oei, Alexander L. Vahrmeijer, Harry Hendrikse, Geert Kazemier, Marijke den Hollander, Robert C. Schuit, Albert D. Windhorst, Ronald Boellaard, Rutger-Jan Swijnenburg, Maqsood Yaqub\",\"doi\":\"10.1007/s00259-024-07037-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Purpose</h3><p>The aim of this study was to validate simplified methods for quantifying [<sup>68</sup>Ga]Ga-FAPI-46 uptake against full pharmacokinetic modeling.</p><h3 data-test=\\\"abstract-sub-heading\\\">Methods</h3><p>Ten patients with pancreatobiliary cancer underwent a 90-min dynamic PET/CT scan using a long axial field of view system. Arterial blood samples were used to establish calibrated plasma-input function from both continuous arterial sampling and image-derived input function (IDIF). Lesional [<sup>68</sup>Ga]Ga-FAPI-46 kinetics were described using conventional non-linear plasma-input tissue-compartment models. Logan plots using 30–90 min and 30–60 min post-injection (p.i), image-based target-to-whole blood ratio (TBR), mean standardized uptake values (SUVmean) normalized to body weight, lean body mass, and body surface area, at 20–30 min, 60–70 min and 80–90 min p.i were assessed.</p><h3 data-test=\\\"abstract-sub-heading\\\">Results</h3><p>One patient was excluded due to discontinued scan acquisition and missing arterial sampling. Thirteen tumoral lesions and 11 non-tumoral lesions were included. A reversible 2-tissue-compartment model showed most preferrable fits for all types of [<sup>68</sup>Ga]Ga-FAPI-46 positive lesions. The distribution volume (V<sub>T</sub>) results obtained using arterial sampling plasma-input function and those using plasma-IDIF (V<sub>T_plasma_IDIF</sub>) showed an excellent correlation (Spearman rank correlation coefficient (r<sub>s</sub>) = 0.949). Logan V<sub>T</sub> using both time intervals were highly correlated with V<sub>T_plasma_IDIF</sub> (r<sub>s</sub> ≥ 0.938). The correlation values with V<sub>T_plasma_IDIF</sub> for image-based TBR and SUVmean parameters were higher at 80–90 min (r<sub>s</sub> ≥ 0.839) and at 60–70 min (r<sub>s</sub> ≥ 0.835) p.i than at 20–30 min p.i (r<sub>s</sub> ≤ 0.774).</p><h3 data-test=\\\"abstract-sub-heading\\\">Conclusion</h3><p>Image-based TBR and SUVmean at 60–70 min p.i are suitable for quantifying [<sup>68</sup>Ga]Ga-FAPI-46 uptake.</p><h3 data-test=\\\"abstract-sub-heading\\\">Trial registration</h3><p>EudraCT, EudraCT 2022-001867-29. Registered 02 November 2022.</p>\",\"PeriodicalId\":11909,\"journal\":{\"name\":\"European Journal of Nuclear Medicine and Molecular Imaging\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Nuclear Medicine and Molecular Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00259-024-07037-6\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Nuclear Medicine and Molecular Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00259-024-07037-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
摘要
目的通过建立全药代动力学模型,验证[68Ga]Ga-FAPI-46摄取定量的简化方法。方法10例胰胆癌患者采用长轴向视野系统进行90 min动态PET/CT扫描。通过动脉连续采样和图像衍生输入函数(IDIF),利用动脉血样本建立校准后的血浆输入函数。病变[68Ga]Ga-FAPI-46动力学使用传统的非线性等离子体输入组织室模型进行描述。Logan图采用注射后30-90分钟和30-60分钟(p.i)、基于图像的靶血与全血比(TBR)、平均标准化摄取值(SUVmean)在20-30分钟、60-70分钟和80-90分钟(p.i)归一化为体重、瘦体重和体表面积进行评估。结果1例患者因扫描采集中断和动脉采样缺失而被排除。包括13个肿瘤病变和11个非肿瘤病变。可逆2组织室模型最适合于所有类型的[68Ga]Ga-FAPI-46阳性病变。动脉采样血浆输入函数与血浆idif (VT_plasma_IDIF)的分布体积(VT)结果具有极好的相关性(Spearman秩相关系数(rs) = 0.949)。两种时间间隔Logan VT与VT_plasma_IDIF高度相关(rs≥0.938)。基于图像的TBR和SUVmean参数与VT_plasma_IDIF在80 ~ 90 min (rs≥0.839)和60 ~ 70 min (rs≥0.835)的相关性高于20 ~ 30 min (rs≤0.774)。结论基于图像的TBR和SUVmean在60-70 min p.i可用于定量[68Ga]Ga-FAPI-46摄取。试验注册EudraCT, EudraCT 2022-001867-29。注册于2022年11月02日。
Assessment of fully quantitative and simplified methods for analysis of [68Ga]Ga-FAPI-46 uptake in patients with pancreatobiliary cancer using LAFOV PET/CT
Purpose
The aim of this study was to validate simplified methods for quantifying [68Ga]Ga-FAPI-46 uptake against full pharmacokinetic modeling.
Methods
Ten patients with pancreatobiliary cancer underwent a 90-min dynamic PET/CT scan using a long axial field of view system. Arterial blood samples were used to establish calibrated plasma-input function from both continuous arterial sampling and image-derived input function (IDIF). Lesional [68Ga]Ga-FAPI-46 kinetics were described using conventional non-linear plasma-input tissue-compartment models. Logan plots using 30–90 min and 30–60 min post-injection (p.i), image-based target-to-whole blood ratio (TBR), mean standardized uptake values (SUVmean) normalized to body weight, lean body mass, and body surface area, at 20–30 min, 60–70 min and 80–90 min p.i were assessed.
Results
One patient was excluded due to discontinued scan acquisition and missing arterial sampling. Thirteen tumoral lesions and 11 non-tumoral lesions were included. A reversible 2-tissue-compartment model showed most preferrable fits for all types of [68Ga]Ga-FAPI-46 positive lesions. The distribution volume (VT) results obtained using arterial sampling plasma-input function and those using plasma-IDIF (VT_plasma_IDIF) showed an excellent correlation (Spearman rank correlation coefficient (rs) = 0.949). Logan VT using both time intervals were highly correlated with VT_plasma_IDIF (rs ≥ 0.938). The correlation values with VT_plasma_IDIF for image-based TBR and SUVmean parameters were higher at 80–90 min (rs ≥ 0.839) and at 60–70 min (rs ≥ 0.835) p.i than at 20–30 min p.i (rs ≤ 0.774).
Conclusion
Image-based TBR and SUVmean at 60–70 min p.i are suitable for quantifying [68Ga]Ga-FAPI-46 uptake.
Trial registration
EudraCT, EudraCT 2022-001867-29. Registered 02 November 2022.
期刊介绍:
The European Journal of Nuclear Medicine and Molecular Imaging serves as a platform for the exchange of clinical and scientific information within nuclear medicine and related professions. It welcomes international submissions from professionals involved in the functional, metabolic, and molecular investigation of diseases. The journal's coverage spans physics, dosimetry, radiation biology, radiochemistry, and pharmacy, providing high-quality peer review by experts in the field. Known for highly cited and downloaded articles, it ensures global visibility for research work and is part of the EJNMMI journal family.