Manxu Zhou, Guanting Ye, Ka-Veng Yuen, Wenhao Yu, Qiang Jin
{"title":"预制构件检测的图注意推理模型","authors":"Manxu Zhou, Guanting Ye, Ka-Veng Yuen, Wenhao Yu, Qiang Jin","doi":"10.1111/mice.13373","DOIUrl":null,"url":null,"abstract":"Accurately checking the position and presence of internal components before casting prefabricated elements is critical to ensuring product quality. However, traditional manual visual inspection is often inefficient and inaccurate. While deep learning has been widely applied to quality inspection of prefabricated components, most studies focus on surface defects and cracks, with less emphasis on the internal structural complexities of these components. Prefabricated composite panels, due to their complex structure—including small embedded parts and large-scale reinforcing rib—require high-precision, multiscale feature recognition. This study developed an instance segmentation model: a graph attention reasoning model (GARM) for prefabricated component detection, for the quality inspection of prefabricated concrete composite panels. First, a dataset of prefabricated concrete composite components was constructed to address the shortage of existing data and provide sufficient samples for training the segmentation network. Subsequently, after training on a self-built dataset of prefabricated concrete composite panels, ablation experiments and comparative tests were conducted. The GARM segmentation model demonstrated superior performance in terms of detection speed and model lightweighting. Its accuracy surpassed other models, with a mean average precision (mAP<sub>50</sub>) of 88.7%. This study confirms the efficacy and reliability of the GARM instance segmentation model in detecting prefabricated concrete composite panels.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"1 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A graph attention reasoning model for prefabricated component detection\",\"authors\":\"Manxu Zhou, Guanting Ye, Ka-Veng Yuen, Wenhao Yu, Qiang Jin\",\"doi\":\"10.1111/mice.13373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurately checking the position and presence of internal components before casting prefabricated elements is critical to ensuring product quality. However, traditional manual visual inspection is often inefficient and inaccurate. While deep learning has been widely applied to quality inspection of prefabricated components, most studies focus on surface defects and cracks, with less emphasis on the internal structural complexities of these components. Prefabricated composite panels, due to their complex structure—including small embedded parts and large-scale reinforcing rib—require high-precision, multiscale feature recognition. This study developed an instance segmentation model: a graph attention reasoning model (GARM) for prefabricated component detection, for the quality inspection of prefabricated concrete composite panels. First, a dataset of prefabricated concrete composite components was constructed to address the shortage of existing data and provide sufficient samples for training the segmentation network. Subsequently, after training on a self-built dataset of prefabricated concrete composite panels, ablation experiments and comparative tests were conducted. The GARM segmentation model demonstrated superior performance in terms of detection speed and model lightweighting. Its accuracy surpassed other models, with a mean average precision (mAP<sub>50</sub>) of 88.7%. This study confirms the efficacy and reliability of the GARM instance segmentation model in detecting prefabricated concrete composite panels.\",\"PeriodicalId\":156,\"journal\":{\"name\":\"Computer-Aided Civil and Infrastructure Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer-Aided Civil and Infrastructure Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/mice.13373\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13373","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A graph attention reasoning model for prefabricated component detection
Accurately checking the position and presence of internal components before casting prefabricated elements is critical to ensuring product quality. However, traditional manual visual inspection is often inefficient and inaccurate. While deep learning has been widely applied to quality inspection of prefabricated components, most studies focus on surface defects and cracks, with less emphasis on the internal structural complexities of these components. Prefabricated composite panels, due to their complex structure—including small embedded parts and large-scale reinforcing rib—require high-precision, multiscale feature recognition. This study developed an instance segmentation model: a graph attention reasoning model (GARM) for prefabricated component detection, for the quality inspection of prefabricated concrete composite panels. First, a dataset of prefabricated concrete composite components was constructed to address the shortage of existing data and provide sufficient samples for training the segmentation network. Subsequently, after training on a self-built dataset of prefabricated concrete composite panels, ablation experiments and comparative tests were conducted. The GARM segmentation model demonstrated superior performance in terms of detection speed and model lightweighting. Its accuracy surpassed other models, with a mean average precision (mAP50) of 88.7%. This study confirms the efficacy and reliability of the GARM instance segmentation model in detecting prefabricated concrete composite panels.
期刊介绍:
Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms.
Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.