预制构件检测的图注意推理模型

IF 8.5 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer-Aided Civil and Infrastructure Engineering Pub Date : 2025-01-02 DOI:10.1111/mice.13373
Manxu Zhou, Guanting Ye, Ka-Veng Yuen, Wenhao Yu, Qiang Jin
{"title":"预制构件检测的图注意推理模型","authors":"Manxu Zhou, Guanting Ye, Ka-Veng Yuen, Wenhao Yu, Qiang Jin","doi":"10.1111/mice.13373","DOIUrl":null,"url":null,"abstract":"Accurately checking the position and presence of internal components before casting prefabricated elements is critical to ensuring product quality. However, traditional manual visual inspection is often inefficient and inaccurate. While deep learning has been widely applied to quality inspection of prefabricated components, most studies focus on surface defects and cracks, with less emphasis on the internal structural complexities of these components. Prefabricated composite panels, due to their complex structure—including small embedded parts and large-scale reinforcing rib—require high-precision, multiscale feature recognition. This study developed an instance segmentation model: a graph attention reasoning model (GARM) for prefabricated component detection, for the quality inspection of prefabricated concrete composite panels. First, a dataset of prefabricated concrete composite components was constructed to address the shortage of existing data and provide sufficient samples for training the segmentation network. Subsequently, after training on a self-built dataset of prefabricated concrete composite panels, ablation experiments and comparative tests were conducted. The GARM segmentation model demonstrated superior performance in terms of detection speed and model lightweighting. Its accuracy surpassed other models, with a mean average precision (mAP<sub>50</sub>) of 88.7%. This study confirms the efficacy and reliability of the GARM instance segmentation model in detecting prefabricated concrete composite panels.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"1 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A graph attention reasoning model for prefabricated component detection\",\"authors\":\"Manxu Zhou, Guanting Ye, Ka-Veng Yuen, Wenhao Yu, Qiang Jin\",\"doi\":\"10.1111/mice.13373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurately checking the position and presence of internal components before casting prefabricated elements is critical to ensuring product quality. However, traditional manual visual inspection is often inefficient and inaccurate. While deep learning has been widely applied to quality inspection of prefabricated components, most studies focus on surface defects and cracks, with less emphasis on the internal structural complexities of these components. Prefabricated composite panels, due to their complex structure—including small embedded parts and large-scale reinforcing rib—require high-precision, multiscale feature recognition. This study developed an instance segmentation model: a graph attention reasoning model (GARM) for prefabricated component detection, for the quality inspection of prefabricated concrete composite panels. First, a dataset of prefabricated concrete composite components was constructed to address the shortage of existing data and provide sufficient samples for training the segmentation network. Subsequently, after training on a self-built dataset of prefabricated concrete composite panels, ablation experiments and comparative tests were conducted. The GARM segmentation model demonstrated superior performance in terms of detection speed and model lightweighting. Its accuracy surpassed other models, with a mean average precision (mAP<sub>50</sub>) of 88.7%. This study confirms the efficacy and reliability of the GARM instance segmentation model in detecting prefabricated concrete composite panels.\",\"PeriodicalId\":156,\"journal\":{\"name\":\"Computer-Aided Civil and Infrastructure Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer-Aided Civil and Infrastructure Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/mice.13373\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13373","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在铸造预制构件之前准确检查内部构件的位置和存在对确保产品质量至关重要。然而,传统的人工目视检测往往效率低下且不准确。虽然深度学习已经被广泛应用于预制构件的质量检测,但大多数研究都集中在表面缺陷和裂纹上,很少关注这些构件内部结构的复杂性。预制复合板由于其复杂的结构,包括小的预埋件和大规模的加强肋,需要高精度、多尺度的特征识别。本研究针对预制混凝土复合板的质量检测,开发了一种实例分割模型:图注意推理模型(GARM)。首先,构建预制混凝土复合构件数据集,解决现有数据的不足,为分割网络的训练提供足够的样本;随后,在自建预制混凝土复合板数据集上进行训练后,进行烧蚀实验和对比试验。GARM分割模型在检测速度和模型轻量化方面表现出优异的性能。其精度优于其他模型,平均精度(mAP50)为88.7%。验证了GARM实例分割模型在预制混凝土复合板检测中的有效性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A graph attention reasoning model for prefabricated component detection
Accurately checking the position and presence of internal components before casting prefabricated elements is critical to ensuring product quality. However, traditional manual visual inspection is often inefficient and inaccurate. While deep learning has been widely applied to quality inspection of prefabricated components, most studies focus on surface defects and cracks, with less emphasis on the internal structural complexities of these components. Prefabricated composite panels, due to their complex structure—including small embedded parts and large-scale reinforcing rib—require high-precision, multiscale feature recognition. This study developed an instance segmentation model: a graph attention reasoning model (GARM) for prefabricated component detection, for the quality inspection of prefabricated concrete composite panels. First, a dataset of prefabricated concrete composite components was constructed to address the shortage of existing data and provide sufficient samples for training the segmentation network. Subsequently, after training on a self-built dataset of prefabricated concrete composite panels, ablation experiments and comparative tests were conducted. The GARM segmentation model demonstrated superior performance in terms of detection speed and model lightweighting. Its accuracy surpassed other models, with a mean average precision (mAP50) of 88.7%. This study confirms the efficacy and reliability of the GARM instance segmentation model in detecting prefabricated concrete composite panels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.60
自引率
19.80%
发文量
146
审稿时长
1 months
期刊介绍: Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms. Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.
期刊最新文献
Reinforcement learning-based trajectory planning for continuous digging of excavator working devices in trenching tasks Vehicle wheel load positioning method based on multiple projective planes Modeling the collective behavior of pedestrians with the spontaneous loose leader–follower structure in public spaces Cover Image, Volume 40, Issue 4 Enhanced three-dimensional instance segmentation using multi-feature extracting point cloud neural network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1