移动恶意软件传播中非线性分数网络安全感知模型的机器学习驱动外生神经结构

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Chaos Solitons & Fractals Pub Date : 2024-12-30 DOI:10.1016/j.chaos.2024.115948
Kiran Asma , Muhammad Asif Zahoor Raja , Chuan-Yu Chang , Muhammad Junaid Ali Asif Raja , Muhammad Shoaib
{"title":"移动恶意软件传播中非线性分数网络安全感知模型的机器学习驱动外生神经结构","authors":"Kiran Asma ,&nbsp;Muhammad Asif Zahoor Raja ,&nbsp;Chuan-Yu Chang ,&nbsp;Muhammad Junaid Ali Asif Raja ,&nbsp;Muhammad Shoaib","doi":"10.1016/j.chaos.2024.115948","DOIUrl":null,"url":null,"abstract":"<div><div>A vulnerable mobile device remains a critical concern for the sustainable development of information security infrastructure, and the massive increase in mobile malware propagation further amplifies the need for heightened cybersecurity awareness among mobile users. In this paper, a novel framework is presented to explore the machine learning solutions for nonlinear fractional cybersecurity awareness on mobile malware propagation (NFCSA-MMP) model by constructing multilayer autoregressive exogenous networks (MARXNs) trained iteratively by the Levenberg-Marquardt (MARXNs-LM) algorithm. The NFCSA-MMP system represented with Unaware-Susceptible, Aware-Susceptible, Latent, Breakout, Quarantine and Recovery fractional compartments models the different stages of mobile devices states during malware propagation and recovery. To scrutinize the propagation mechanism of mobile malware, the simulation data generated by utilizing Grünwald–Letnikov (GL) fractional finite difference-based computing procedure for NFCSA-MMP model for both integer and fractional ordered values corresponding to variation in the rate of security-aware mobile devices connected to a network, the rate of latent mobile devices becomes breakout, and the recovery rates of latent, breakout, and quarantined devices due to treatment. The proposed methodology MARXNs-LM is executed on acquired datasets randomly sectioned into training, testing and validation samples by achieving the minimum value of the mean square error (MSE) to determine the machine predictive solution of NFCSA-MMP for each scenario. The vigorousness of proposed MARXNs-LM scheme proven by comparative analysis on convergence trends on reduction of MSE, magnitude of absolute deviation, input-output correlation, error histograms and error autocorrelation statistics for solving stiff NFCSA-MMP model.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"192 ","pages":"Article 115948"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning-driven exogenous neural architecture for nonlinear fractional cybersecurity awareness model in mobile malware propagation\",\"authors\":\"Kiran Asma ,&nbsp;Muhammad Asif Zahoor Raja ,&nbsp;Chuan-Yu Chang ,&nbsp;Muhammad Junaid Ali Asif Raja ,&nbsp;Muhammad Shoaib\",\"doi\":\"10.1016/j.chaos.2024.115948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A vulnerable mobile device remains a critical concern for the sustainable development of information security infrastructure, and the massive increase in mobile malware propagation further amplifies the need for heightened cybersecurity awareness among mobile users. In this paper, a novel framework is presented to explore the machine learning solutions for nonlinear fractional cybersecurity awareness on mobile malware propagation (NFCSA-MMP) model by constructing multilayer autoregressive exogenous networks (MARXNs) trained iteratively by the Levenberg-Marquardt (MARXNs-LM) algorithm. The NFCSA-MMP system represented with Unaware-Susceptible, Aware-Susceptible, Latent, Breakout, Quarantine and Recovery fractional compartments models the different stages of mobile devices states during malware propagation and recovery. To scrutinize the propagation mechanism of mobile malware, the simulation data generated by utilizing Grünwald–Letnikov (GL) fractional finite difference-based computing procedure for NFCSA-MMP model for both integer and fractional ordered values corresponding to variation in the rate of security-aware mobile devices connected to a network, the rate of latent mobile devices becomes breakout, and the recovery rates of latent, breakout, and quarantined devices due to treatment. The proposed methodology MARXNs-LM is executed on acquired datasets randomly sectioned into training, testing and validation samples by achieving the minimum value of the mean square error (MSE) to determine the machine predictive solution of NFCSA-MMP for each scenario. The vigorousness of proposed MARXNs-LM scheme proven by comparative analysis on convergence trends on reduction of MSE, magnitude of absolute deviation, input-output correlation, error histograms and error autocorrelation statistics for solving stiff NFCSA-MMP model.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"192 \",\"pages\":\"Article 115948\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077924015005\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924015005","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

易受攻击的移动设备仍然是信息安全基础设施可持续发展的关键问题,移动恶意软件传播的大量增加进一步放大了移动用户提高网络安全意识的需求。本文提出了一个新的框架,通过构建由Levenberg-Marquardt (MARXNs- lm)算法迭代训练的多层自回归外生网络(MARXNs),探索移动恶意软件传播非线性分数网络安全意识(NFCSA-MMP)模型的机器学习解决方案。NFCSA-MMP系统以无意识易受影响、有意识易受影响、潜伏、爆发、隔离和恢复等部分分区为代表,模拟了恶意软件传播和恢复期间移动设备状态的不同阶段。为了深入研究移动恶意软件的传播机制,利用gr nwald - letnikov (GL)分数阶有限差分计算程序对NFCSA-MMP模型生成的整数和分数阶有序值的模拟数据,对应于安全感知移动设备连接到网络的速率变化,潜在移动设备的速率变为突破,以及潜在、突破和隔离设备因处理而恢复的速率。所提出的方法MARXNs-LM通过实现均方误差(MSE)的最小值,在随机分为训练、测试和验证样本的采集数据集上执行,以确定NFCSA-MMP在每个场景下的机器预测解决方案。通过对求解刚性NFCSA-MMP模型的MSE减小、绝对偏差大小、输入-输出相关性、误差直方图和误差自相关统计量的收敛趋势的比较分析,证明了所提出的MARXNs-LM方案的健壮性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning-driven exogenous neural architecture for nonlinear fractional cybersecurity awareness model in mobile malware propagation
A vulnerable mobile device remains a critical concern for the sustainable development of information security infrastructure, and the massive increase in mobile malware propagation further amplifies the need for heightened cybersecurity awareness among mobile users. In this paper, a novel framework is presented to explore the machine learning solutions for nonlinear fractional cybersecurity awareness on mobile malware propagation (NFCSA-MMP) model by constructing multilayer autoregressive exogenous networks (MARXNs) trained iteratively by the Levenberg-Marquardt (MARXNs-LM) algorithm. The NFCSA-MMP system represented with Unaware-Susceptible, Aware-Susceptible, Latent, Breakout, Quarantine and Recovery fractional compartments models the different stages of mobile devices states during malware propagation and recovery. To scrutinize the propagation mechanism of mobile malware, the simulation data generated by utilizing Grünwald–Letnikov (GL) fractional finite difference-based computing procedure for NFCSA-MMP model for both integer and fractional ordered values corresponding to variation in the rate of security-aware mobile devices connected to a network, the rate of latent mobile devices becomes breakout, and the recovery rates of latent, breakout, and quarantined devices due to treatment. The proposed methodology MARXNs-LM is executed on acquired datasets randomly sectioned into training, testing and validation samples by achieving the minimum value of the mean square error (MSE) to determine the machine predictive solution of NFCSA-MMP for each scenario. The vigorousness of proposed MARXNs-LM scheme proven by comparative analysis on convergence trends on reduction of MSE, magnitude of absolute deviation, input-output correlation, error histograms and error autocorrelation statistics for solving stiff NFCSA-MMP model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
期刊最新文献
Editorial Board Elastic interaction of second-order rogue matter waves for the modified Gross–Pitaevskii equation with time-dependent trapping potential and gain/loss Dynamically controllable two-color electromagnetically induced grating via spatially modulated inelastic two-wave mixing Optimizing Physics-Informed Neural Networks with hybrid activation functions: A comparative study on improving residual loss and accuracy using partial differential equations Dynamical analysis, multi-cavity control and DSP implementation of a novel memristive autapse neuron model emulating brain behaviors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1