基于多比特电阻和模式和非理想调谐机制的sot - mram CIM设计

IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Magnetics Pub Date : 2024-11-04 DOI:10.1109/TMAG.2024.3491334
Junzhan Liu;Liang Zhang;Jinhao Li;Shaoqing Du;Hui Jin;Hongxi Liu;Kaihua Cao;He Zhang;Wang Kang
{"title":"基于多比特电阻和模式和非理想调谐机制的sot - mram CIM设计","authors":"Junzhan Liu;Liang Zhang;Jinhao Li;Shaoqing Du;Hui Jin;Hongxi Liu;Kaihua Cao;He Zhang;Wang Kang","doi":"10.1109/TMAG.2024.3491334","DOIUrl":null,"url":null,"abstract":"Computing-in-memory (CIM) technique has attracted considerable attention as a candidate path to surmount the “memory wall” bottleneck in the post-Moore era. Due to its non-volatile characteristics, low power dissipation, and short response latency, magnetoresistive random access memory (MRAM) has emerged as a widely researched memory medium for CIM designs. This article proposes a multi-bit CIM paradigm based on the resistance-sum principle. This paradigm is implemented in our fabricated dual-MTJ-single-bottom-electrode spin-orbit torque MRAM (SOT-MRAM), referred to as MB-SOT-CIM, which can also be conveniently configured for binary neural networks (BNNs). Thanks to this paradigm, over 50% weight loading is eliminated. Besides, a non-idealities tuning mechanism is presented for the time-domain output unit through a concise lookup table (LUT). This work is simulated using a 40-nm foundry process based on the test parameters of our fabricated SOT devices. Due to the utilization of higher-resistance SOT devices and optimal circuit design, the results demonstrate that the proposed MB-SOT-CIM achieves 57.35 TOPS/W energy efficiency under 4/4/4-bit precision, normalized to 917.6 TOPS/W at 1-bit precision, while exhibits enhanced robustness. This offers a promising technical solution for edge devices.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 1","pages":"1-6"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A SOT-MRAM-Based CIM Design With Multi-Bit Resistance-Sum Paradigm and Non-Idealities Tuning Mechanism\",\"authors\":\"Junzhan Liu;Liang Zhang;Jinhao Li;Shaoqing Du;Hui Jin;Hongxi Liu;Kaihua Cao;He Zhang;Wang Kang\",\"doi\":\"10.1109/TMAG.2024.3491334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computing-in-memory (CIM) technique has attracted considerable attention as a candidate path to surmount the “memory wall” bottleneck in the post-Moore era. Due to its non-volatile characteristics, low power dissipation, and short response latency, magnetoresistive random access memory (MRAM) has emerged as a widely researched memory medium for CIM designs. This article proposes a multi-bit CIM paradigm based on the resistance-sum principle. This paradigm is implemented in our fabricated dual-MTJ-single-bottom-electrode spin-orbit torque MRAM (SOT-MRAM), referred to as MB-SOT-CIM, which can also be conveniently configured for binary neural networks (BNNs). Thanks to this paradigm, over 50% weight loading is eliminated. Besides, a non-idealities tuning mechanism is presented for the time-domain output unit through a concise lookup table (LUT). This work is simulated using a 40-nm foundry process based on the test parameters of our fabricated SOT devices. Due to the utilization of higher-resistance SOT devices and optimal circuit design, the results demonstrate that the proposed MB-SOT-CIM achieves 57.35 TOPS/W energy efficiency under 4/4/4-bit precision, normalized to 917.6 TOPS/W at 1-bit precision, while exhibits enhanced robustness. This offers a promising technical solution for edge devices.\",\"PeriodicalId\":13405,\"journal\":{\"name\":\"IEEE Transactions on Magnetics\",\"volume\":\"61 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Magnetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10742424/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Magnetics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10742424/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

内存计算(CIM)技术作为克服后摩尔时代“内存墙”瓶颈的候选途径引起了相当大的关注。磁阻随机存取存储器(MRAM)由于其非易失性、低功耗和短响应延迟的特点,已成为CIM设计中广泛研究的存储介质。本文提出了一种基于电阻和原理的多比特CIM模式。这种模式在我们制造的双mtj -单底电极自旋轨道扭矩MRAM (SOT-MRAM)中实现,称为MB-SOT-CIM,它也可以方便地配置为二元神经网络(bnn)。由于这种模式,超过50%的重量负载被消除。此外,通过简洁的查找表(LUT),提出了时域输出单元的非理想性调优机制。基于我们制造的SOT器件的测试参数,使用40纳米铸造工艺模拟了这项工作。由于采用了高电阻SOT器件和优化的电路设计,结果表明,所提出的MB-SOT-CIM在4/4/4位精度下的能量效率达到57.35 TOPS/W,在1位精度下归一化为917.6 TOPS/W,同时具有增强的鲁棒性。这为边缘设备提供了一个有前途的技术解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A SOT-MRAM-Based CIM Design With Multi-Bit Resistance-Sum Paradigm and Non-Idealities Tuning Mechanism
Computing-in-memory (CIM) technique has attracted considerable attention as a candidate path to surmount the “memory wall” bottleneck in the post-Moore era. Due to its non-volatile characteristics, low power dissipation, and short response latency, magnetoresistive random access memory (MRAM) has emerged as a widely researched memory medium for CIM designs. This article proposes a multi-bit CIM paradigm based on the resistance-sum principle. This paradigm is implemented in our fabricated dual-MTJ-single-bottom-electrode spin-orbit torque MRAM (SOT-MRAM), referred to as MB-SOT-CIM, which can also be conveniently configured for binary neural networks (BNNs). Thanks to this paradigm, over 50% weight loading is eliminated. Besides, a non-idealities tuning mechanism is presented for the time-domain output unit through a concise lookup table (LUT). This work is simulated using a 40-nm foundry process based on the test parameters of our fabricated SOT devices. Due to the utilization of higher-resistance SOT devices and optimal circuit design, the results demonstrate that the proposed MB-SOT-CIM achieves 57.35 TOPS/W energy efficiency under 4/4/4-bit precision, normalized to 917.6 TOPS/W at 1-bit precision, while exhibits enhanced robustness. This offers a promising technical solution for edge devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Magnetics
IEEE Transactions on Magnetics 工程技术-工程:电子与电气
CiteScore
4.00
自引率
14.30%
发文量
565
审稿时长
4.1 months
期刊介绍: Science and technology related to the basic physics and engineering of magnetism, magnetic materials, applied magnetics, magnetic devices, and magnetic data storage. The IEEE Transactions on Magnetics publishes scholarly articles of archival value as well as tutorial expositions and critical reviews of classical subjects and topics of current interest.
期刊最新文献
Table of Contents Front Cover IEEE Transactions on Magnetics Publication Information IEEE Transactions on Magnetics Institutional Listings IEEE Magnetics Society Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1