线性随机系统无分布最优控制的保形预测

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS IEEE Control Systems Letters Pub Date : 2024-12-09 DOI:10.1109/LCSYS.2024.3514472
Eleftherios E. Vlahakis;Lars Lindemann;Pantelis Sopasakis;Dimos V. Dimarogonas
{"title":"线性随机系统无分布最优控制的保形预测","authors":"Eleftherios E. Vlahakis;Lars Lindemann;Pantelis Sopasakis;Dimos V. Dimarogonas","doi":"10.1109/LCSYS.2024.3514472","DOIUrl":null,"url":null,"abstract":"We address an optimal control problem for linear stochastic systems with unknown noise distributions and joint chance constraints using conformal prediction. Our approach involves designing a feedback controller to maintain an error system within a prediction region (PR). We define PRs as sublevel sets of a nonconformity score over error trajectories, enabling the handling of joint chance constraints. We propose two methods to design feedback control and PRs: one through direct optimization over error trajectory samples, and the other indirectly using the S-procedure with a disturbance ellipsoid obtained from data. By tightening constraints with PRs, we solve a relaxed problem to synthesize a feedback policy. Our method ensures reliable probabilistic guarantees based on marginal coverage, independent of data size.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"2835-2840"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conformal Prediction for Distribution-Free Optimal Control of Linear Stochastic Systems\",\"authors\":\"Eleftherios E. Vlahakis;Lars Lindemann;Pantelis Sopasakis;Dimos V. Dimarogonas\",\"doi\":\"10.1109/LCSYS.2024.3514472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address an optimal control problem for linear stochastic systems with unknown noise distributions and joint chance constraints using conformal prediction. Our approach involves designing a feedback controller to maintain an error system within a prediction region (PR). We define PRs as sublevel sets of a nonconformity score over error trajectories, enabling the handling of joint chance constraints. We propose two methods to design feedback control and PRs: one through direct optimization over error trajectory samples, and the other indirectly using the S-procedure with a disturbance ellipsoid obtained from data. By tightening constraints with PRs, we solve a relaxed problem to synthesize a feedback policy. Our method ensures reliable probabilistic guarantees based on marginal coverage, independent of data size.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"8 \",\"pages\":\"2835-2840\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10787048/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10787048/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

我们用保形预测解决了具有未知噪声分布和联合机会约束的线性随机系统的最优控制问题。我们的方法包括设计一个反馈控制器来维持预测区域(PR)内的误差系统。我们将pr定义为错误轨迹上的不合格分数的子层次集,使联合机会约束的处理成为可能。我们提出了两种设计反馈控制和pr的方法:一种是通过对误差轨迹样本的直接优化,另一种是通过从数据中获得的扰动椭球间接使用s过程。通过用pr收紧约束,我们解决了一个松弛问题来综合反馈策略。我们的方法确保可靠的概率保证基于边际覆盖率,独立于数据大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Conformal Prediction for Distribution-Free Optimal Control of Linear Stochastic Systems
We address an optimal control problem for linear stochastic systems with unknown noise distributions and joint chance constraints using conformal prediction. Our approach involves designing a feedback controller to maintain an error system within a prediction region (PR). We define PRs as sublevel sets of a nonconformity score over error trajectories, enabling the handling of joint chance constraints. We propose two methods to design feedback control and PRs: one through direct optimization over error trajectory samples, and the other indirectly using the S-procedure with a disturbance ellipsoid obtained from data. By tightening constraints with PRs, we solve a relaxed problem to synthesize a feedback policy. Our method ensures reliable probabilistic guarantees based on marginal coverage, independent of data size.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
期刊最新文献
Robust and Exponential Stability in Barrier-Certified Systems via Contracting Piecewise Smooth Dynamics PID Control of MIMO Nonlinear Uncertain Systems With Low Relative Degrees Robust NMPC for Uncalibrated IBVS Control of AUVs Contraction Analysis of Continuation Method for Suboptimal Model Predictive Control Spiking Nonlinear Opinion Dynamics (S-NOD) for Agile Decision-Making
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1