利用机器学习算法预测边坡稳定性潜在破坏面

IF 1.827 Q2 Earth and Planetary Sciences Arabian Journal of Geosciences Pub Date : 2025-01-03 DOI:10.1007/s12517-024-12146-5
MyoungSoo Won, Shamsher Sadiq, JianBin Wang, YuCong Gao
{"title":"利用机器学习算法预测边坡稳定性潜在破坏面","authors":"MyoungSoo Won,&nbsp;Shamsher Sadiq,&nbsp;JianBin Wang,&nbsp;YuCong Gao","doi":"10.1007/s12517-024-12146-5","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigated the performance of machine learning models in predicting the FS and slip surface. The models considered include support vector machine (SVM), random forest (RF), and extreme gradient boosting (XGBoost) algorithms. The slope stability analysis data for training of machine learning algorithms were obtained through the limit equilibrium method. This includes various scenarios of dry and homogeneous slope cases, encompassing a range of slope geometries (height (<i>H</i>), slope ratio (<i>v</i>/<i>h</i>)), and soil shear strength parameters (soil unit weight (γ), cohesion (<i>c</i>), friction angle (ϕ)). According to the evaluation using Taylor’s chart metrics, including standard deviation, correlation determination (<i>R</i><sup>2</sup>), and root-mean-square error (RMSE), the XGBoost algorithm demonstrated the best performance. Additionally, employing the SHapley Additive exPlanations (SHAP) methodology revealed the significance order of variables as <i>v</i>/<i>h</i> &gt; <i>H</i> &gt; <i>c</i> &gt; ϕ &gt; γ for the factor of safety (FS) and <i>H</i> &gt; <i>v</i>/<i>h</i> &gt; <i>c</i> &gt; ϕ &gt; γ for the slip surface.</p></div>","PeriodicalId":476,"journal":{"name":"Arabian Journal of Geosciences","volume":"18 1","pages":""},"PeriodicalIF":1.8270,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting slope stability potential failure surface using machine learning algorithms\",\"authors\":\"MyoungSoo Won,&nbsp;Shamsher Sadiq,&nbsp;JianBin Wang,&nbsp;YuCong Gao\",\"doi\":\"10.1007/s12517-024-12146-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigated the performance of machine learning models in predicting the FS and slip surface. The models considered include support vector machine (SVM), random forest (RF), and extreme gradient boosting (XGBoost) algorithms. The slope stability analysis data for training of machine learning algorithms were obtained through the limit equilibrium method. This includes various scenarios of dry and homogeneous slope cases, encompassing a range of slope geometries (height (<i>H</i>), slope ratio (<i>v</i>/<i>h</i>)), and soil shear strength parameters (soil unit weight (γ), cohesion (<i>c</i>), friction angle (ϕ)). According to the evaluation using Taylor’s chart metrics, including standard deviation, correlation determination (<i>R</i><sup>2</sup>), and root-mean-square error (RMSE), the XGBoost algorithm demonstrated the best performance. Additionally, employing the SHapley Additive exPlanations (SHAP) methodology revealed the significance order of variables as <i>v</i>/<i>h</i> &gt; <i>H</i> &gt; <i>c</i> &gt; ϕ &gt; γ for the factor of safety (FS) and <i>H</i> &gt; <i>v</i>/<i>h</i> &gt; <i>c</i> &gt; ϕ &gt; γ for the slip surface.</p></div>\",\"PeriodicalId\":476,\"journal\":{\"name\":\"Arabian Journal of Geosciences\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8270,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arabian Journal of Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12517-024-12146-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal of Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s12517-024-12146-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了机器学习模型在预测FS和滑移面方面的性能。考虑的模型包括支持向量机(SVM)、随机森林(RF)和极端梯度增强(XGBoost)算法。通过极限平衡法获得用于机器学习算法训练的边坡稳定性分析数据。这包括干燥和均匀边坡情况的各种情况,包括一系列边坡几何形状(高度(H),坡度比(v/ H))和土壤抗剪强度参数(土壤单位重量(γ),凝聚力(c),摩擦角(ϕ))。根据Taylor’s chart指标的评价,包括标准差、相关确定(R2)和均方根误差(RMSE), XGBoost算法表现出最好的性能。此外,采用SHapley加性解释(SHAP)方法揭示了变量的显著性顺序为v/h >; h > c >; ϕ >; γ对于安全系数(FS)和h >; v/h > c >; ϕ >; γ对于滑移面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting slope stability potential failure surface using machine learning algorithms

This study investigated the performance of machine learning models in predicting the FS and slip surface. The models considered include support vector machine (SVM), random forest (RF), and extreme gradient boosting (XGBoost) algorithms. The slope stability analysis data for training of machine learning algorithms were obtained through the limit equilibrium method. This includes various scenarios of dry and homogeneous slope cases, encompassing a range of slope geometries (height (H), slope ratio (v/h)), and soil shear strength parameters (soil unit weight (γ), cohesion (c), friction angle (ϕ)). According to the evaluation using Taylor’s chart metrics, including standard deviation, correlation determination (R2), and root-mean-square error (RMSE), the XGBoost algorithm demonstrated the best performance. Additionally, employing the SHapley Additive exPlanations (SHAP) methodology revealed the significance order of variables as v/h > H > c > ϕ > γ for the factor of safety (FS) and H > v/h > c > ϕ > γ for the slip surface.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arabian Journal of Geosciences
Arabian Journal of Geosciences GEOSCIENCES, MULTIDISCIPLINARY-
自引率
0.00%
发文量
1587
审稿时长
6.7 months
期刊介绍: The Arabian Journal of Geosciences is the official journal of the Saudi Society for Geosciences and publishes peer-reviewed original and review articles on the entire range of Earth Science themes, focused on, but not limited to, those that have regional significance to the Middle East and the Euro-Mediterranean Zone. Key topics therefore include; geology, hydrogeology, earth system science, petroleum sciences, geophysics, seismology and crustal structures, tectonics, sedimentology, palaeontology, metamorphic and igneous petrology, natural hazards, environmental sciences and sustainable development, geoarchaeology, geomorphology, paleo-environment studies, oceanography, atmospheric sciences, GIS and remote sensing, geodesy, mineralogy, volcanology, geochemistry and metallogenesis.
期刊最新文献
Numerical investigation on energy efficiency of horizontal heat pump systems in buildings heating and cooling: case study of Mostaganem (Algeria) Stability analysis of overburden rocks—a new approach An up-to-date perspective on technological accidents triggered by natural events Investigation of radiation shielding parameters of different heavy metallic glass compositions for gamma radiations Microbial dynamics in soil: Impacts on fertility, nutrient cycling, and soil properties for sustainable geosciences—people, planet, and prosperity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1