超声辅助双酶体系制备脂肪酸乙酯

IF 2.3 4区 化学 Q3 CHEMISTRY, PHYSICAL Catalysis Letters Pub Date : 2025-01-03 DOI:10.1007/s10562-024-04908-3
Yan Wang, Xiaohong Hao, Xiongzhi Da, Xiangsheng Zheng
{"title":"超声辅助双酶体系制备脂肪酸乙酯","authors":"Yan Wang,&nbsp;Xiaohong Hao,&nbsp;Xiongzhi Da,&nbsp;Xiangsheng Zheng","doi":"10.1007/s10562-024-04908-3","DOIUrl":null,"url":null,"abstract":"<div><p>This study focuses on the preparation of fatty acid ethyl esters (FAEE) in a solvent-free system using high-acid-value waste oil as the raw material. The research involves the addition of two enzymes with different substrate specificities, accompanied by ultrasonic assistance. The investigation explores the impact of enzyme addition (3–7 wt%), enzyme ratio (3:1–1:3), alcohol–oil ratio (5:1–25:1 mmol/g), reaction temperature (30–70 °C), reaction time (30–210 min), and ultrasonic power (0–150 W) on the experimental outcomes. Reaction conditions were optimized by analyzing regression models. The predicted optimal process parameters for FAEE conversion are as follows: enzyme addition of 5.46 wt%, enzyme ratio of 1:2.23, alcohol–oil ratio of 13.79:1 mmol/g, reaction temperature of 60 °C, reaction time of 160 min, and ultrasonic power of 120 W. Under these optimized conditions, three validation experiments were carried out to take the average value, and the conversion rate of FAEE was 93.57 ± 1.17%, which was in good agreement with the predicted value. These results showed that the synergistic effect of the two enzymes accelerated the migration of acyl groups, verified the advantages of the dual enzyme as a catalyst, and provided theoretical support for the preparation of biodiesel by the dual enzyme system.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":"155 2","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrasound-Assisted Dual-Enzyme System for the Preparation of Fatty Acid Ethyl Esters\",\"authors\":\"Yan Wang,&nbsp;Xiaohong Hao,&nbsp;Xiongzhi Da,&nbsp;Xiangsheng Zheng\",\"doi\":\"10.1007/s10562-024-04908-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study focuses on the preparation of fatty acid ethyl esters (FAEE) in a solvent-free system using high-acid-value waste oil as the raw material. The research involves the addition of two enzymes with different substrate specificities, accompanied by ultrasonic assistance. The investigation explores the impact of enzyme addition (3–7 wt%), enzyme ratio (3:1–1:3), alcohol–oil ratio (5:1–25:1 mmol/g), reaction temperature (30–70 °C), reaction time (30–210 min), and ultrasonic power (0–150 W) on the experimental outcomes. Reaction conditions were optimized by analyzing regression models. The predicted optimal process parameters for FAEE conversion are as follows: enzyme addition of 5.46 wt%, enzyme ratio of 1:2.23, alcohol–oil ratio of 13.79:1 mmol/g, reaction temperature of 60 °C, reaction time of 160 min, and ultrasonic power of 120 W. Under these optimized conditions, three validation experiments were carried out to take the average value, and the conversion rate of FAEE was 93.57 ± 1.17%, which was in good agreement with the predicted value. These results showed that the synergistic effect of the two enzymes accelerated the migration of acyl groups, verified the advantages of the dual enzyme as a catalyst, and provided theoretical support for the preparation of biodiesel by the dual enzyme system.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":508,\"journal\":{\"name\":\"Catalysis Letters\",\"volume\":\"155 2\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10562-024-04908-3\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Letters","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10562-024-04908-3","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究以高酸值废油为原料,在无溶剂体系中制备脂肪酸乙酯(FAEE)。该研究涉及添加两种具有不同底物特异性的酶,并伴有超声波辅助。考察了酶添加量(3-7 wt%)、酶比(3:1-1:3)、醇油比(5:1-25:1 mmol/g)、反应温度(30-70℃)、反应时间(30-210 min)、超声功率(0-150 W)对实验结果的影响。通过分析回归模型对反应条件进行优化。预测FAEE转化的最佳工艺参数为:酶添加量5.46 wt%,酶比1:2.23,醇油比13.79:1 mmol/g,反应温度60℃,反应时间160 min,超声功率120 W。在此优化条件下,进行3次验证实验取平均值,FAEE转化率为93.57±1.17%,与预测值吻合较好。这些结果表明,两种酶的协同作用加速了酰基的迁移,验证了双酶作为催化剂的优势,为双酶体系制备生物柴油提供了理论支持。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ultrasound-Assisted Dual-Enzyme System for the Preparation of Fatty Acid Ethyl Esters

This study focuses on the preparation of fatty acid ethyl esters (FAEE) in a solvent-free system using high-acid-value waste oil as the raw material. The research involves the addition of two enzymes with different substrate specificities, accompanied by ultrasonic assistance. The investigation explores the impact of enzyme addition (3–7 wt%), enzyme ratio (3:1–1:3), alcohol–oil ratio (5:1–25:1 mmol/g), reaction temperature (30–70 °C), reaction time (30–210 min), and ultrasonic power (0–150 W) on the experimental outcomes. Reaction conditions were optimized by analyzing regression models. The predicted optimal process parameters for FAEE conversion are as follows: enzyme addition of 5.46 wt%, enzyme ratio of 1:2.23, alcohol–oil ratio of 13.79:1 mmol/g, reaction temperature of 60 °C, reaction time of 160 min, and ultrasonic power of 120 W. Under these optimized conditions, three validation experiments were carried out to take the average value, and the conversion rate of FAEE was 93.57 ± 1.17%, which was in good agreement with the predicted value. These results showed that the synergistic effect of the two enzymes accelerated the migration of acyl groups, verified the advantages of the dual enzyme as a catalyst, and provided theoretical support for the preparation of biodiesel by the dual enzyme system.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Catalysis Letters
Catalysis Letters 化学-物理化学
CiteScore
5.70
自引率
3.60%
发文量
327
审稿时长
1 months
期刊介绍: Catalysis Letters aim is the rapid publication of outstanding and high-impact original research articles in catalysis. The scope of the journal covers a broad range of topics in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis. The high-quality original research articles published in Catalysis Letters are subject to rigorous peer review. Accepted papers are published online first and subsequently in print issues. All contributions must include a graphical abstract. Manuscripts should be written in English and the responsibility lies with the authors to ensure that they are grammatically and linguistically correct. Authors for whom English is not the working language are encouraged to consider using a professional language-editing service before submitting their manuscripts.
期刊最新文献
Liquid Phase Nitration of Benzene to Nitrobenzene Using a Mesoporous MoO3/Nb2O5 Nanocatalyst Single-Atom Catalysis for CO Combustion in Automotive Exhaust: A DFT Study Enhanced Catalytic Performance of Egyptian Red Clay Modified with Zirconia Nanoparticles for Methanol Dehydration to Dimethyl Ether g-C3N4 Enhanced Fe3+/ Fe2+ Cycling to Activate PMS for Pharmaceuticals Degradation Under Solar Irradiation Ru Distribution and Activity of Ru/C Catalyst for Continuous Hydrogenation of 3,5-dimethylpyridine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1