硅藻体构建高容量药物微载体。

IF 5.4 2区 医学 Q1 BIOPHYSICS Colloids and Surfaces B: Biointerfaces Pub Date : 2025-04-01 Epub Date: 2024-12-27 DOI:10.1016/j.colsurfb.2024.114481
Houjie Wang, Runyu You, Yangqi Jin, Guangning Wang, Feng Li, Yahui Gao, Changping Chen, Nengming Xiao, Junrong Liang
{"title":"硅藻体构建高容量药物微载体。","authors":"Houjie Wang, Runyu You, Yangqi Jin, Guangning Wang, Feng Li, Yahui Gao, Changping Chen, Nengming Xiao, Junrong Liang","doi":"10.1016/j.colsurfb.2024.114481","DOIUrl":null,"url":null,"abstract":"<p><p>The drug loading capacity is a critical performance metric for drug delivery systems. A high capacity ensures efficient drug delivery to target sites at lower doses, reducing the amount of carrier material needed and lessening patient burden. However, improving drug loading capacity in diatom frustule-based systems remains a challenge. In this study, we explored effective strategies for developing a microcarrier with a high drug loading efficiency using diatom frustules (DF) derived from Thalassiosira weissflogii. We found that combining an evaporative loading method with a chitosan (Chi) coating was particularly effective for enhancing the drug loading capacity of indomethacin (IND), a hydrophobic model drug. Further optimization of the indomethacin-to-APTES-modified frustule (DF-NH<sub>2</sub>) ratio to 2:1, along with adjusting the medium pH to 5, further improved drug loading efficiency. Additionally, the chitosan coating on the drug-loaded frustules not only enabled sustained drug release but also enhanced the biocompatibility of the carriers. The resulting DF-NH<sub>2</sub>/IND@Chi microcarrier demonstrated a drug loading efficiency of 58.78 ± 1.92 % for IND, with a pH-dependent controlled release profile. This performance significantly outperforms previous reports, which typically report loading efficiencies between 10 % and 35 %, with few exceeding 40 %. In vitro cytotoxicity tests also revealed significant activity against colon cancer cells, highlighting the potential therapeutic benefits of this system. This study provides a systematic approach to creating high-capacity drug microcarriers using diatom frustules, offering promising prospects for future drug delivery applications.</p>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"248 ","pages":"114481"},"PeriodicalIF":5.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of a high-capacity drug microcarrier using diatom frustules.\",\"authors\":\"Houjie Wang, Runyu You, Yangqi Jin, Guangning Wang, Feng Li, Yahui Gao, Changping Chen, Nengming Xiao, Junrong Liang\",\"doi\":\"10.1016/j.colsurfb.2024.114481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The drug loading capacity is a critical performance metric for drug delivery systems. A high capacity ensures efficient drug delivery to target sites at lower doses, reducing the amount of carrier material needed and lessening patient burden. However, improving drug loading capacity in diatom frustule-based systems remains a challenge. In this study, we explored effective strategies for developing a microcarrier with a high drug loading efficiency using diatom frustules (DF) derived from Thalassiosira weissflogii. We found that combining an evaporative loading method with a chitosan (Chi) coating was particularly effective for enhancing the drug loading capacity of indomethacin (IND), a hydrophobic model drug. Further optimization of the indomethacin-to-APTES-modified frustule (DF-NH<sub>2</sub>) ratio to 2:1, along with adjusting the medium pH to 5, further improved drug loading efficiency. Additionally, the chitosan coating on the drug-loaded frustules not only enabled sustained drug release but also enhanced the biocompatibility of the carriers. The resulting DF-NH<sub>2</sub>/IND@Chi microcarrier demonstrated a drug loading efficiency of 58.78 ± 1.92 % for IND, with a pH-dependent controlled release profile. This performance significantly outperforms previous reports, which typically report loading efficiencies between 10 % and 35 %, with few exceeding 40 %. In vitro cytotoxicity tests also revealed significant activity against colon cancer cells, highlighting the potential therapeutic benefits of this system. This study provides a systematic approach to creating high-capacity drug microcarriers using diatom frustules, offering promising prospects for future drug delivery applications.</p>\",\"PeriodicalId\":279,\"journal\":{\"name\":\"Colloids and Surfaces B: Biointerfaces\",\"volume\":\"248 \",\"pages\":\"114481\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloids and Surfaces B: Biointerfaces\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1016/j.colsurfb.2024.114481\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.colsurfb.2024.114481","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

载药能力是给药系统的一项重要性能指标。高容量可确保以较低剂量有效地将药物输送到靶点,减少所需载体材料的数量并减轻患者负担。然而,提高硅藻支架系统的载药能力仍然是一个挑战。在本研究中,我们探索了利用来自weissflogii的硅藻体(DF)开发具有高载药效率的微载体的有效策略。研究发现,壳聚糖(Chi)包被与蒸发装药方法相结合,可有效提高疏水模型药物吲哚美辛(IND)的载药量。进一步优化吲哚美辛- aptes修饰支架(DF-NH2)的比例为2:1,调节培养基pH为5,进一步提高了载药效率。此外,壳聚糖在载药小体上的包覆不仅可以促进药物的持续释放,而且可以增强载体的生物相容性。所得DF-NH2/IND@Chi微载体对IND的载药效率为58.78 ± 1.92 %,具有ph依赖性控释谱。这个性能明显优于以前的报告,以前报告的加载效率通常在10 %到35 %之间,很少超过40 %。体外细胞毒性测试也显示出对结肠癌细胞的显著活性,突出了该系统的潜在治疗益处。本研究提供了一种系统的方法来制造高容量的硅藻微载体,为未来的药物递送应用提供了广阔的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Construction of a high-capacity drug microcarrier using diatom frustules.

The drug loading capacity is a critical performance metric for drug delivery systems. A high capacity ensures efficient drug delivery to target sites at lower doses, reducing the amount of carrier material needed and lessening patient burden. However, improving drug loading capacity in diatom frustule-based systems remains a challenge. In this study, we explored effective strategies for developing a microcarrier with a high drug loading efficiency using diatom frustules (DF) derived from Thalassiosira weissflogii. We found that combining an evaporative loading method with a chitosan (Chi) coating was particularly effective for enhancing the drug loading capacity of indomethacin (IND), a hydrophobic model drug. Further optimization of the indomethacin-to-APTES-modified frustule (DF-NH2) ratio to 2:1, along with adjusting the medium pH to 5, further improved drug loading efficiency. Additionally, the chitosan coating on the drug-loaded frustules not only enabled sustained drug release but also enhanced the biocompatibility of the carriers. The resulting DF-NH2/IND@Chi microcarrier demonstrated a drug loading efficiency of 58.78 ± 1.92 % for IND, with a pH-dependent controlled release profile. This performance significantly outperforms previous reports, which typically report loading efficiencies between 10 % and 35 %, with few exceeding 40 %. In vitro cytotoxicity tests also revealed significant activity against colon cancer cells, highlighting the potential therapeutic benefits of this system. This study provides a systematic approach to creating high-capacity drug microcarriers using diatom frustules, offering promising prospects for future drug delivery applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Colloids and Surfaces B: Biointerfaces
Colloids and Surfaces B: Biointerfaces 生物-材料科学:生物材料
CiteScore
11.10
自引率
3.40%
发文量
730
审稿时长
42 days
期刊介绍: Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields. Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication. The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.
期刊最新文献
Corrigendum to "Sodium alginate hydrogel containing platelet-rich plasma for wound healing" [Colloids Surf. B Biointerfaces 222 (2023) 113096]. Stimuli-responsive dual-drug loaded microspheres with differential drug release for antibacterial and wound repair promotion. Corrigendum to "Preparation of antibacterial hydrogel from poly(aspartic hydrazide) and quaternized N-[3-(dimethylamino) propyl] methylacrylamide copolymer with antioxidant and hemostatic effects for wound repairing" [Colloids Surf. B Biointerfaces 238 (2024) 113881]. Corrigendum to 'One-pot synthesis of chlorhexidine-templated biodegradable mesoporous organosilica nanoantiseptics' [Colloid. Surf. B: Biointerfaces 187(2019)110653]. Sensitive electrochemical detection of glycated hemoglobin (HbA1c) using cobalt metal-organic framework/two-dimensional molybdenum diselenide nanocomposite-based immunosensors amplified by polyoxometalate/DNA aptamer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1