Elina Suut-Tuule, Eve Schults, Tatsiana Jarg, Jasper Adamson, Dzmitry Kananovich, Riina Aav
{"title":"生物素的可扩展机械化学合成[j]。","authors":"Elina Suut-Tuule, Eve Schults, Tatsiana Jarg, Jasper Adamson, Dzmitry Kananovich, Riina Aav","doi":"10.1002/cssc.202402354","DOIUrl":null,"url":null,"abstract":"<p><p>Biotin[6]uril, a chiral, water-soluble and anion binding macrocycle, is formed via dynamic covalent chemistry. In this study, we present a scalable and high-yielding synthesis of biotin[6]uril via a mechanochemical solid-state approach. The optimized protocol involves mechanical grinding of solid d-biotin with paraformaldehyde in the presence of 0.3 equivalents of 48 % aqueous HBr, which functions as a catalyst, template, and liquid grinding additive. This mechanochemical process is carried out in a shaker or planetary mill, followed by aging at an elevated temperature to produce biotin[6]uril with an HPLC yield of up to 96 %. The condensation and macrocyclization reaction was successfully scaled up 82-fold, producing nearly 20 g of biotin[6]uril with a high 92 % isolated yield and 91 % purity. Compared to conventional solution-based method, this mechanochemical approach offers several advantages, including significantly higher yields, shorter reaction times, enhanced scalability, simpler operational requirements, and substantially lower process mass intensity.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402354"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable Mechanochemical Synthesis of Biotin[6]uril.\",\"authors\":\"Elina Suut-Tuule, Eve Schults, Tatsiana Jarg, Jasper Adamson, Dzmitry Kananovich, Riina Aav\",\"doi\":\"10.1002/cssc.202402354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biotin[6]uril, a chiral, water-soluble and anion binding macrocycle, is formed via dynamic covalent chemistry. In this study, we present a scalable and high-yielding synthesis of biotin[6]uril via a mechanochemical solid-state approach. The optimized protocol involves mechanical grinding of solid d-biotin with paraformaldehyde in the presence of 0.3 equivalents of 48 % aqueous HBr, which functions as a catalyst, template, and liquid grinding additive. This mechanochemical process is carried out in a shaker or planetary mill, followed by aging at an elevated temperature to produce biotin[6]uril with an HPLC yield of up to 96 %. The condensation and macrocyclization reaction was successfully scaled up 82-fold, producing nearly 20 g of biotin[6]uril with a high 92 % isolated yield and 91 % purity. Compared to conventional solution-based method, this mechanochemical approach offers several advantages, including significantly higher yields, shorter reaction times, enhanced scalability, simpler operational requirements, and substantially lower process mass intensity.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202402354\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202402354\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202402354","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Scalable Mechanochemical Synthesis of Biotin[6]uril.
Biotin[6]uril, a chiral, water-soluble and anion binding macrocycle, is formed via dynamic covalent chemistry. In this study, we present a scalable and high-yielding synthesis of biotin[6]uril via a mechanochemical solid-state approach. The optimized protocol involves mechanical grinding of solid d-biotin with paraformaldehyde in the presence of 0.3 equivalents of 48 % aqueous HBr, which functions as a catalyst, template, and liquid grinding additive. This mechanochemical process is carried out in a shaker or planetary mill, followed by aging at an elevated temperature to produce biotin[6]uril with an HPLC yield of up to 96 %. The condensation and macrocyclization reaction was successfully scaled up 82-fold, producing nearly 20 g of biotin[6]uril with a high 92 % isolated yield and 91 % purity. Compared to conventional solution-based method, this mechanochemical approach offers several advantages, including significantly higher yields, shorter reaction times, enhanced scalability, simpler operational requirements, and substantially lower process mass intensity.
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology