基于MOFs及其复合材料的新型碱金属电池。

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ChemSusChem Pub Date : 2025-01-02 DOI:10.1002/cssc.202402289
Wenting Li, Chengze Li, Jin Guo, Tianhao Jiang, Wei Kang, Huan Pang
{"title":"基于MOFs及其复合材料的新型碱金属电池。","authors":"Wenting Li, Chengze Li, Jin Guo, Tianhao Jiang, Wei Kang, Huan Pang","doi":"10.1002/cssc.202402289","DOIUrl":null,"url":null,"abstract":"<p><p>The integration of metal-organic frameworks (MOFs) with functional materials has established a versatile platform for a wide range of energy storage applications. Due to their large specific surface area, high porosity, and tunable structural properties, MOFs hold significant promise as components in energy storage systems, including electrodes, electrolytes, and separators for alkali metal-ion batteries (AIBs). Although lithium-ion batteries (LIBs) are widely used, their commercial graphite anode materials are nearing their theoretical capacity limits, and the scarcity of lithium and cobalt resources increases costs. Although zinc-ion batteries (ZIBs) suffer from limited cycling stability, they are attractive for their low cost, high capacity, and excellent safety. Meanwhile, potassium-ion (PIBs) and sodium-ion batteries (SIBs) show promise due to their affordability and abundant resources, but they encounter issues such as short cycle life and low energy density. This review outlines the applications of MOF composites in LIBs, SIBs, and ZIBs, introduces common synthesis methods, and forecasts future development directions and challenges in energy storage applications. We emphasize how the understanding can lay the foundation for developing MOF composites with enhanced functionalities.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402289"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced Alkali Metal Batteries Based on MOFs and Their Composites.\",\"authors\":\"Wenting Li, Chengze Li, Jin Guo, Tianhao Jiang, Wei Kang, Huan Pang\",\"doi\":\"10.1002/cssc.202402289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The integration of metal-organic frameworks (MOFs) with functional materials has established a versatile platform for a wide range of energy storage applications. Due to their large specific surface area, high porosity, and tunable structural properties, MOFs hold significant promise as components in energy storage systems, including electrodes, electrolytes, and separators for alkali metal-ion batteries (AIBs). Although lithium-ion batteries (LIBs) are widely used, their commercial graphite anode materials are nearing their theoretical capacity limits, and the scarcity of lithium and cobalt resources increases costs. Although zinc-ion batteries (ZIBs) suffer from limited cycling stability, they are attractive for their low cost, high capacity, and excellent safety. Meanwhile, potassium-ion (PIBs) and sodium-ion batteries (SIBs) show promise due to their affordability and abundant resources, but they encounter issues such as short cycle life and low energy density. This review outlines the applications of MOF composites in LIBs, SIBs, and ZIBs, introduces common synthesis methods, and forecasts future development directions and challenges in energy storage applications. We emphasize how the understanding can lay the foundation for developing MOF composites with enhanced functionalities.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202402289\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202402289\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202402289","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

金属有机框架(MOFs)与功能材料的集成为广泛的储能应用建立了一个多功能平台。由于mof具有较大的比表面积、高孔隙率和可调的结构特性,它作为储能系统的组件,包括电极、电解质和碱金属离子电池(aib)的分离器,具有重要的前景。虽然锂离子电池(LIBs)被广泛使用,但其商用石墨负极材料已接近其理论容量极限,而且锂和钴资源的稀缺性增加了成本。尽管锌离子电池的循环稳定性有限,但其成本低、容量大、安全性好等优点具有很大的吸引力。与此同时,钾离子电池(PIBs)和钠离子电池(SIBs)因价格合理、资源丰富而具有广阔的应用前景,但也存在循环寿命短、能量密度低等问题。综述了MOF复合材料在lib、SIBs和ZIBs中的应用,介绍了常用的合成方法,并预测了未来在储能应用中的发展方向和挑战。我们强调这种理解如何为开发具有增强功能的MOF复合材料奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advanced Alkali Metal Batteries Based on MOFs and Their Composites.

The integration of metal-organic frameworks (MOFs) with functional materials has established a versatile platform for a wide range of energy storage applications. Due to their large specific surface area, high porosity, and tunable structural properties, MOFs hold significant promise as components in energy storage systems, including electrodes, electrolytes, and separators for alkali metal-ion batteries (AIBs). Although lithium-ion batteries (LIBs) are widely used, their commercial graphite anode materials are nearing their theoretical capacity limits, and the scarcity of lithium and cobalt resources increases costs. Although zinc-ion batteries (ZIBs) suffer from limited cycling stability, they are attractive for their low cost, high capacity, and excellent safety. Meanwhile, potassium-ion (PIBs) and sodium-ion batteries (SIBs) show promise due to their affordability and abundant resources, but they encounter issues such as short cycle life and low energy density. This review outlines the applications of MOF composites in LIBs, SIBs, and ZIBs, introduces common synthesis methods, and forecasts future development directions and challenges in energy storage applications. We emphasize how the understanding can lay the foundation for developing MOF composites with enhanced functionalities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
期刊最新文献
Access to Highly Functional and Polymerizable Carbonate-Drug Conjugates. Exploring the Potential of H-zeolites as Heterogeneous Catalysts for the Chemical Recycling of Polysaccharides and their Flexible Films. Scope and Limitations of the Use of Methanesulfonic Acid (MSA) as a Green Acid for Global Deprotection in Solid-Phase Peptide Synthesis. The Roles of Hydroxyl Radicals and Superoxide in Oxidizing Aqueous Benzyl Alcohol under Ultrasound Irradiation. Continuous-Flow Synthesis of BiVO4 Nanoparticles: From laboratory scale to practical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1