原细胞刺激间充质干细胞网增强盆腔器官脱垂治疗。

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL Advanced Healthcare Materials Pub Date : 2025-01-02 DOI:10.1002/adhm.202403603
Ao Xiao, Jian Wang, Xi Chen, Han Wu, Xinran Jiang, Yaqin Zhao, Zhenzhen Wu, Chen Wang, Xingfu Wei, Yannan Sheng, Jiali Niu, Yongyan Hu, Haixiang Su, Qing Liu, Lingqian Chang
{"title":"原细胞刺激间充质干细胞网增强盆腔器官脱垂治疗。","authors":"Ao Xiao, Jian Wang, Xi Chen, Han Wu, Xinran Jiang, Yaqin Zhao, Zhenzhen Wu, Chen Wang, Xingfu Wei, Yannan Sheng, Jiali Niu, Yongyan Hu, Haixiang Su, Qing Liu, Lingqian Chang","doi":"10.1002/adhm.202403603","DOIUrl":null,"url":null,"abstract":"<p><p>Implantation of a mesh loaded with mesenchymal stem cells (MSCs) is a common approach for the treatment of pelvic organ prolapse (POP). The mesh provides effective support to pelvic floor, enhancing muscle contraction of pelvic organs while reducing inflammation. In this study, a fully degradable mesh is designed for the treatment of POP, utilizing MSCs stimulated by a galvanic battery-powered electric field. The bioelectronic mesh consists of two parts: a galvanic cell film and a porous hydrogel loaded with MSCs. The battery film has a flexible substrate, on which Zinc and Molybdenum film electrodes form a galvanic cell that discharges at up to 1.2 V, stimulating cell proliferation and migration of the MSCs pre-loaded in the hydrogel. The hydrogel provides anchoring and growth sites for the MSCs. The bioelectronic mesh elevates the production of elasticity-related and healing-related factors, enhancing the strength and elasticity of the pelvic tissue and promoting tissue regeneration for POP repair. Compared to traditional stem cell therapy, the local stimulation strategy significantly reduces inflammation in pelvic tissues. In addition, the bioelectronic mesh completely degrades after in vivo application, which avoids risks caused by surgical removal, demonstrating good biocompatibility in the implanted mesh.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2403603"},"PeriodicalIF":10.0000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Galvanic Cell-Stimulated Mesenchymal Stem Cell Mesh for Enhanced Pelvic Organ Prolapse Treatment.\",\"authors\":\"Ao Xiao, Jian Wang, Xi Chen, Han Wu, Xinran Jiang, Yaqin Zhao, Zhenzhen Wu, Chen Wang, Xingfu Wei, Yannan Sheng, Jiali Niu, Yongyan Hu, Haixiang Su, Qing Liu, Lingqian Chang\",\"doi\":\"10.1002/adhm.202403603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Implantation of a mesh loaded with mesenchymal stem cells (MSCs) is a common approach for the treatment of pelvic organ prolapse (POP). The mesh provides effective support to pelvic floor, enhancing muscle contraction of pelvic organs while reducing inflammation. In this study, a fully degradable mesh is designed for the treatment of POP, utilizing MSCs stimulated by a galvanic battery-powered electric field. The bioelectronic mesh consists of two parts: a galvanic cell film and a porous hydrogel loaded with MSCs. The battery film has a flexible substrate, on which Zinc and Molybdenum film electrodes form a galvanic cell that discharges at up to 1.2 V, stimulating cell proliferation and migration of the MSCs pre-loaded in the hydrogel. The hydrogel provides anchoring and growth sites for the MSCs. The bioelectronic mesh elevates the production of elasticity-related and healing-related factors, enhancing the strength and elasticity of the pelvic tissue and promoting tissue regeneration for POP repair. Compared to traditional stem cell therapy, the local stimulation strategy significantly reduces inflammation in pelvic tissues. In addition, the bioelectronic mesh completely degrades after in vivo application, which avoids risks caused by surgical removal, demonstrating good biocompatibility in the implanted mesh.</p>\",\"PeriodicalId\":113,\"journal\":{\"name\":\"Advanced Healthcare Materials\",\"volume\":\" \",\"pages\":\"e2403603\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Healthcare Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adhm.202403603\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202403603","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

植入装有间充质干细胞(MSCs)的网状物是治疗盆腔器官脱垂(POP)的常用方法。网状物对盆底提供有效的支撑,增强盆腔器官的肌肉收缩,同时减少炎症。在这项研究中,利用原电池供电的电场刺激MSCs,设计了一种完全可降解的网状物来治疗POP。生物电子网由两部分组成:原电池膜和装载msc的多孔水凝胶。电池薄膜具有柔性衬底,锌和钼薄膜电极在其上形成原电池,放电电压高达1.2 V,刺激预加载在水凝胶中的间充质干细胞的细胞增殖和迁移。水凝胶为间充质干细胞提供了锚定和生长位点。生物电子网提高了弹性相关因子和愈合相关因子的产生,增强了骨盆组织的强度和弹性,促进了POP修复的组织再生。与传统的干细胞治疗相比,局部刺激策略可显著减少盆腔组织的炎症。此外,生物电子补片在体内使用后完全降解,避免了手术切除带来的风险,在植入补片中表现出良好的生物相容性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Galvanic Cell-Stimulated Mesenchymal Stem Cell Mesh for Enhanced Pelvic Organ Prolapse Treatment.

Implantation of a mesh loaded with mesenchymal stem cells (MSCs) is a common approach for the treatment of pelvic organ prolapse (POP). The mesh provides effective support to pelvic floor, enhancing muscle contraction of pelvic organs while reducing inflammation. In this study, a fully degradable mesh is designed for the treatment of POP, utilizing MSCs stimulated by a galvanic battery-powered electric field. The bioelectronic mesh consists of two parts: a galvanic cell film and a porous hydrogel loaded with MSCs. The battery film has a flexible substrate, on which Zinc and Molybdenum film electrodes form a galvanic cell that discharges at up to 1.2 V, stimulating cell proliferation and migration of the MSCs pre-loaded in the hydrogel. The hydrogel provides anchoring and growth sites for the MSCs. The bioelectronic mesh elevates the production of elasticity-related and healing-related factors, enhancing the strength and elasticity of the pelvic tissue and promoting tissue regeneration for POP repair. Compared to traditional stem cell therapy, the local stimulation strategy significantly reduces inflammation in pelvic tissues. In addition, the bioelectronic mesh completely degrades after in vivo application, which avoids risks caused by surgical removal, demonstrating good biocompatibility in the implanted mesh.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
期刊最新文献
A Dual-Pipeline Lactate Removal Strategy to Reverse Vascular Hyperpermeability for the Management of Lipopolysaccharide-Induced Sepsis. Bioengineering Strategies for Treating Neointimal Hyperplasia in Peripheral Vasculature: Innovations and Challenges. Bioprinted Micro-Clots for Kinetic Analysis of Endothelial Cell-Mediated Fibrinolysis. Bioprinting Perfusable and Vascularized Skeletal Muscle Flaps for the Treatment of Volumetric Muscle Loss. Facile Fabrication of Injectable Multifunctional Hydrogels Based on Gallium-Polyphenol Networks with Superior Antibacterial Activity for Promoting Infected Wound Healing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1