逍遥散结汤治疗三阴性乳腺癌的机制及疗效:网络药理学及实验验证方法。

IF 4.7 2区 医学 Q1 CHEMISTRY, MEDICINAL Drug Design, Development and Therapy Pub Date : 2024-12-27 eCollection Date: 2024-01-01 DOI:10.2147/DDDT.S492047
Yu Qi, Bo Xu, Jinrong He, Bo Jiang, Le Yan, Haiyan Zhou, Saili Chen
{"title":"逍遥散结汤治疗三阴性乳腺癌的机制及疗效:网络药理学及实验验证方法。","authors":"Yu Qi, Bo Xu, Jinrong He, Bo Jiang, Le Yan, Haiyan Zhou, Saili Chen","doi":"10.2147/DDDT.S492047","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Triple-negative breast cancer (TNBC) is a disease associated with high incidence and high mortality, which is a major problem threatening women's health. Xiaoyao Sanjie Decoction (XYSJD) exhibits remarkable therapeutic efficacy on TNBC; however, the underlying mechanism is unclear. This study verified the efficacy of XYSJD and its active component in the treatment of TNBC and explored its potential mechanism.</p><p><strong>Methods: </strong>Ultra-high performance liquid chromatography-hybrid quadrupole orbitrap mass spectrometry (UHPLC-Q Exactive HFX-MS) was applied to explore the main chemical constituents of XYSJD. The key targets and potential mechanisms of XYSJD in the treatment of TNBC were predicted through network pharmacology, bioinformatics analysis and molecular docking. The effects of XYSJD against TNBC cells were evaluated by CCK-8 assay, EdU assay, wound healing assay, transwell assay, Hoechst-PI staining and flow cytometry. The mechanism of action was validated by Western blot analysis. Finally, the effect and mechanism of XYSJD and Que on TNBC were further verified by the tumor formation model.</p><p><strong>Results: </strong>UHPLC-Q Exactive HFX-MS identified a total of 9 compounds in XYSJD. Network pharmacological methods identified 206 targets for anti-TNBC. Bioinformatics analysis suggests that the EZH2/AKT1 signaling pathway might play an important role in the effects of XYSJD against TNBC. Gene Ontology enrichment analysis showed that the biological process of XYSJD in TNBC treatment mainly involved apoptosis. XYSJD and Que were observed to have a good anticancer effect in vivo and in vitro. In addition, quercetin could induce the apoptosis of TNBC cells by decreased the expression levels of EZH2/AKT1 signaling pathway. Furthermore, AKT1 overexpression, treatment with the AKT activator (SC79) and EZH2 overexpression could reverse apoptosis induced by quercetin in TNBC cells.</p><p><strong>Conclusion: </strong>This study revealed the anti-TNBC efficacy of XYSJD. Quercetin, the effective component of XYSJD, promoted apoptosis of TNBC cells via blockade of the EZH2/AKT1 signaling pathway. These findings aim to provide a more reliable basis for the clinical application of XYSJD in the treatment of TNBC.</p>","PeriodicalId":11290,"journal":{"name":"Drug Design, Development and Therapy","volume":"18 ","pages":"6263-6281"},"PeriodicalIF":4.7000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687282/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unveiling the Mechanisms and Therapeutic Effects of Xiaoyao Sanjie Decoction in Triple-Negative Breast Cancer: A Network Pharmacology and Experimental Validation Approach.\",\"authors\":\"Yu Qi, Bo Xu, Jinrong He, Bo Jiang, Le Yan, Haiyan Zhou, Saili Chen\",\"doi\":\"10.2147/DDDT.S492047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Triple-negative breast cancer (TNBC) is a disease associated with high incidence and high mortality, which is a major problem threatening women's health. Xiaoyao Sanjie Decoction (XYSJD) exhibits remarkable therapeutic efficacy on TNBC; however, the underlying mechanism is unclear. This study verified the efficacy of XYSJD and its active component in the treatment of TNBC and explored its potential mechanism.</p><p><strong>Methods: </strong>Ultra-high performance liquid chromatography-hybrid quadrupole orbitrap mass spectrometry (UHPLC-Q Exactive HFX-MS) was applied to explore the main chemical constituents of XYSJD. The key targets and potential mechanisms of XYSJD in the treatment of TNBC were predicted through network pharmacology, bioinformatics analysis and molecular docking. The effects of XYSJD against TNBC cells were evaluated by CCK-8 assay, EdU assay, wound healing assay, transwell assay, Hoechst-PI staining and flow cytometry. The mechanism of action was validated by Western blot analysis. Finally, the effect and mechanism of XYSJD and Que on TNBC were further verified by the tumor formation model.</p><p><strong>Results: </strong>UHPLC-Q Exactive HFX-MS identified a total of 9 compounds in XYSJD. Network pharmacological methods identified 206 targets for anti-TNBC. Bioinformatics analysis suggests that the EZH2/AKT1 signaling pathway might play an important role in the effects of XYSJD against TNBC. Gene Ontology enrichment analysis showed that the biological process of XYSJD in TNBC treatment mainly involved apoptosis. XYSJD and Que were observed to have a good anticancer effect in vivo and in vitro. In addition, quercetin could induce the apoptosis of TNBC cells by decreased the expression levels of EZH2/AKT1 signaling pathway. Furthermore, AKT1 overexpression, treatment with the AKT activator (SC79) and EZH2 overexpression could reverse apoptosis induced by quercetin in TNBC cells.</p><p><strong>Conclusion: </strong>This study revealed the anti-TNBC efficacy of XYSJD. Quercetin, the effective component of XYSJD, promoted apoptosis of TNBC cells via blockade of the EZH2/AKT1 signaling pathway. These findings aim to provide a more reliable basis for the clinical application of XYSJD in the treatment of TNBC.</p>\",\"PeriodicalId\":11290,\"journal\":{\"name\":\"Drug Design, Development and Therapy\",\"volume\":\"18 \",\"pages\":\"6263-6281\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687282/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Design, Development and Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/DDDT.S492047\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Design, Development and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/DDDT.S492047","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:三阴性乳腺癌(TNBC)是一种发病率高、死亡率高的疾病,是威胁妇女健康的主要问题。逍遥散结汤对TNBC有显著的治疗效果;然而,潜在的机制尚不清楚。本研究验证了XYSJD及其有效成分治疗TNBC的疗效,并探讨了其可能的作用机制。方法:采用超高效液相色谱-混合四极杆轨道阱质谱法(UHPLC-Q Exactive HFX-MS)对XYSJD的主要化学成分进行分析。通过网络药理学、生物信息学分析和分子对接,预测XYSJD治疗TNBC的关键靶点和潜在机制。采用CCK-8法、EdU法、创面愈合法、transwell法、Hoechst-PI染色法和流式细胞术评价XYSJD对TNBC细胞的作用。Western blot分析证实了其作用机制。最后,通过肿瘤形成模型进一步验证XYSJD和Que对TNBC的作用和机制。结果:UHPLC-Q - exxx - ms共鉴定出9个化合物。网络药理学方法鉴定出206个抗tnbc的靶点。生物信息学分析提示,EZH2/AKT1信号通路可能在XYSJD抗TNBC的作用中发挥重要作用。基因本体富集分析表明,XYSJD在TNBC治疗中的生物学过程主要涉及细胞凋亡。XYSJD和Que在体内外均有良好的抗癌作用。槲皮素可通过降低EZH2/AKT1信号通路的表达水平诱导TNBC细胞凋亡。此外,AKT1过表达、AKT激活剂(SC79)和EZH2过表达可以逆转槲皮素诱导的TNBC细胞凋亡。结论:本研究揭示了XYSJD抗tnbc的作用。槲皮素是XYSJD的有效成分,通过阻断EZH2/AKT1信号通路促进TNBC细胞凋亡。这些发现旨在为XYSJD治疗TNBC的临床应用提供更可靠的依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unveiling the Mechanisms and Therapeutic Effects of Xiaoyao Sanjie Decoction in Triple-Negative Breast Cancer: A Network Pharmacology and Experimental Validation Approach.

Purpose: Triple-negative breast cancer (TNBC) is a disease associated with high incidence and high mortality, which is a major problem threatening women's health. Xiaoyao Sanjie Decoction (XYSJD) exhibits remarkable therapeutic efficacy on TNBC; however, the underlying mechanism is unclear. This study verified the efficacy of XYSJD and its active component in the treatment of TNBC and explored its potential mechanism.

Methods: Ultra-high performance liquid chromatography-hybrid quadrupole orbitrap mass spectrometry (UHPLC-Q Exactive HFX-MS) was applied to explore the main chemical constituents of XYSJD. The key targets and potential mechanisms of XYSJD in the treatment of TNBC were predicted through network pharmacology, bioinformatics analysis and molecular docking. The effects of XYSJD against TNBC cells were evaluated by CCK-8 assay, EdU assay, wound healing assay, transwell assay, Hoechst-PI staining and flow cytometry. The mechanism of action was validated by Western blot analysis. Finally, the effect and mechanism of XYSJD and Que on TNBC were further verified by the tumor formation model.

Results: UHPLC-Q Exactive HFX-MS identified a total of 9 compounds in XYSJD. Network pharmacological methods identified 206 targets for anti-TNBC. Bioinformatics analysis suggests that the EZH2/AKT1 signaling pathway might play an important role in the effects of XYSJD against TNBC. Gene Ontology enrichment analysis showed that the biological process of XYSJD in TNBC treatment mainly involved apoptosis. XYSJD and Que were observed to have a good anticancer effect in vivo and in vitro. In addition, quercetin could induce the apoptosis of TNBC cells by decreased the expression levels of EZH2/AKT1 signaling pathway. Furthermore, AKT1 overexpression, treatment with the AKT activator (SC79) and EZH2 overexpression could reverse apoptosis induced by quercetin in TNBC cells.

Conclusion: This study revealed the anti-TNBC efficacy of XYSJD. Quercetin, the effective component of XYSJD, promoted apoptosis of TNBC cells via blockade of the EZH2/AKT1 signaling pathway. These findings aim to provide a more reliable basis for the clinical application of XYSJD in the treatment of TNBC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drug Design, Development and Therapy
Drug Design, Development and Therapy CHEMISTRY, MEDICINAL-PHARMACOLOGY & PHARMACY
CiteScore
9.00
自引率
0.00%
发文量
382
审稿时长
>12 weeks
期刊介绍: Drug Design, Development and Therapy is an international, peer-reviewed, open access journal that spans the spectrum of drug design, discovery and development through to clinical applications. The journal is characterized by the rapid reporting of high-quality original research, reviews, expert opinions, commentary and clinical studies in all therapeutic areas. Specific topics covered by the journal include: Drug target identification and validation Phenotypic screening and target deconvolution Biochemical analyses of drug targets and their pathways New methods or relevant applications in molecular/drug design and computer-aided drug discovery* Design, synthesis, and biological evaluation of novel biologically active compounds (including diagnostics or chemical probes) Structural or molecular biological studies elucidating molecular recognition processes Fragment-based drug discovery Pharmaceutical/red biotechnology Isolation, structural characterization, (bio)synthesis, bioengineering and pharmacological evaluation of natural products** Distribution, pharmacokinetics and metabolic transformations of drugs or biologically active compounds in drug development Drug delivery and formulation (design and characterization of dosage forms, release mechanisms and in vivo testing) Preclinical development studies Translational animal models Mechanisms of action and signalling pathways Toxicology Gene therapy, cell therapy and immunotherapy Personalized medicine and pharmacogenomics Clinical drug evaluation Patient safety and sustained use of medicines.
期刊最新文献
Population Pharmacokinetic of Epidural Sufentanil in Labouring Women: A Multicentric, Prospective, Observational Study. Determination of the MEC90 of Oxycodone for Preventing Perioperative Shivering in Pregnant Patients Undergoing Caesarean Delivery with Neuraxial Anaesthesia: A Biased-Coin up-and-Down Sequential Allocation Trial. Effects of Ciprofol and Propofol General Anesthesia on Postoperative Recovery Quality in Patients Undergoing Ureteroscopy: A Randomized, Controlled, Double-Blind Clinical Trial. Enteric-Coated Aspirin Induces Small Intestinal Injury via the Nrf2/Gpx4 Pathway: A Promising Model for Chronic Enteropathy. Prospective Single-Arm Study of Remifentanil-Propofol Anesthesia with Manual Right Hypochondrial Compression for Painless Gastroscopy in Obese Patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1