AspAT过表达可缓解铵对毛白杨根系发育的抑制作用。

IF 2.5 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemical and biophysical research communications Pub Date : 2025-02-01 Epub Date: 2024-12-28 DOI:10.1016/j.bbrc.2024.151263
Meiji Chen, Lang He, Deyang Liang, Chunpu Qu
{"title":"AspAT过表达可缓解铵对毛白杨根系发育的抑制作用。","authors":"Meiji Chen, Lang He, Deyang Liang, Chunpu Qu","doi":"10.1016/j.bbrc.2024.151263","DOIUrl":null,"url":null,"abstract":"<p><p>Ammonium toxicity, resulting from prolonged use of ammonium as the sole nitrogen source, can lead to physiological and morphological disorders, ultimately stunting plant growth. Enhancing ammonium assimilation efficiency has been extensively explored as a strategy to mitigate ammonium toxicity. However, the role of AspAT, a key enzyme in nitrogen assimilation, remains underexplored. This study investigates the function of AspAT in alleviating ammonium toxicity and uncovers the underlying physiological mechanisms. The results show that two Populus AspAT genes, AspAT13 and AspAT15, exhibit the highest expression levels in roots and are induced by exogenous ammonium. Overexpression of AspAT13 and AspAT15 in transgenic plants results in increased root biomass. In these plants, the activities of key nitrogen assimilation enzymes (GS and GOGAT) are significantly enhanced, along with increases in soluble protein, soluble sugar, and free amino acid contents. Additionally, the activities of antioxidant enzymes, such as SOD and CAT, are elevated, and ammonium content in the roots is significantly reduced. Moreover, the levels of hormones, including IAA, ACC, IBA, and BR, are significantly increased in the roots of transgenic plants. Our findings suggest that AspAT13 and AspAT15 play essential roles in mitigating ammonium toxicity, a process closely linked to enhanced nitrogen assimilation, antioxidant systems, and the regulation of auxin and brassinosteroid (BR) signaling.</p>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"746 ","pages":"151263"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overexpression of AspAT alleviates the inhibitory effects of ammonium on root development in Populus tomentosa.\",\"authors\":\"Meiji Chen, Lang He, Deyang Liang, Chunpu Qu\",\"doi\":\"10.1016/j.bbrc.2024.151263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ammonium toxicity, resulting from prolonged use of ammonium as the sole nitrogen source, can lead to physiological and morphological disorders, ultimately stunting plant growth. Enhancing ammonium assimilation efficiency has been extensively explored as a strategy to mitigate ammonium toxicity. However, the role of AspAT, a key enzyme in nitrogen assimilation, remains underexplored. This study investigates the function of AspAT in alleviating ammonium toxicity and uncovers the underlying physiological mechanisms. The results show that two Populus AspAT genes, AspAT13 and AspAT15, exhibit the highest expression levels in roots and are induced by exogenous ammonium. Overexpression of AspAT13 and AspAT15 in transgenic plants results in increased root biomass. In these plants, the activities of key nitrogen assimilation enzymes (GS and GOGAT) are significantly enhanced, along with increases in soluble protein, soluble sugar, and free amino acid contents. Additionally, the activities of antioxidant enzymes, such as SOD and CAT, are elevated, and ammonium content in the roots is significantly reduced. Moreover, the levels of hormones, including IAA, ACC, IBA, and BR, are significantly increased in the roots of transgenic plants. Our findings suggest that AspAT13 and AspAT15 play essential roles in mitigating ammonium toxicity, a process closely linked to enhanced nitrogen assimilation, antioxidant systems, and the regulation of auxin and brassinosteroid (BR) signaling.</p>\",\"PeriodicalId\":8779,\"journal\":{\"name\":\"Biochemical and biophysical research communications\",\"volume\":\"746 \",\"pages\":\"151263\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical and biophysical research communications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bbrc.2024.151263\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bbrc.2024.151263","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

铵中毒是由于长期使用铵作为唯一氮源而引起的,可导致生理和形态紊乱,最终阻碍植物生长。提高氨同化效率作为减轻氨毒性的策略已被广泛探讨。然而,作为氮同化的关键酶,AspAT的作用仍未得到充分的研究。本研究旨在探讨AspAT在减轻铵毒性中的作用,并揭示其潜在的生理机制。结果表明,杨树AspAT基因AspAT13和AspAT15在根中表达量最高,且受外源铵的诱导。转基因植物中AspAT13和AspAT15的过表达导致根系生物量增加。这些植物的关键氮素同化酶(GS和GOGAT)活性显著增强,可溶性蛋白、可溶性糖和游离氨基酸含量增加。根系中SOD、CAT等抗氧化酶活性显著升高,铵含量显著降低。此外,转基因植株根部的IAA、ACC、IBA、BR等激素水平显著升高。我们的研究结果表明,AspAT13和AspAT15在减轻铵毒性中发挥重要作用,这一过程与增强的氮同化、抗氧化系统以及生长素和油菜素内酯(BR)信号的调节密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Overexpression of AspAT alleviates the inhibitory effects of ammonium on root development in Populus tomentosa.

Ammonium toxicity, resulting from prolonged use of ammonium as the sole nitrogen source, can lead to physiological and morphological disorders, ultimately stunting plant growth. Enhancing ammonium assimilation efficiency has been extensively explored as a strategy to mitigate ammonium toxicity. However, the role of AspAT, a key enzyme in nitrogen assimilation, remains underexplored. This study investigates the function of AspAT in alleviating ammonium toxicity and uncovers the underlying physiological mechanisms. The results show that two Populus AspAT genes, AspAT13 and AspAT15, exhibit the highest expression levels in roots and are induced by exogenous ammonium. Overexpression of AspAT13 and AspAT15 in transgenic plants results in increased root biomass. In these plants, the activities of key nitrogen assimilation enzymes (GS and GOGAT) are significantly enhanced, along with increases in soluble protein, soluble sugar, and free amino acid contents. Additionally, the activities of antioxidant enzymes, such as SOD and CAT, are elevated, and ammonium content in the roots is significantly reduced. Moreover, the levels of hormones, including IAA, ACC, IBA, and BR, are significantly increased in the roots of transgenic plants. Our findings suggest that AspAT13 and AspAT15 play essential roles in mitigating ammonium toxicity, a process closely linked to enhanced nitrogen assimilation, antioxidant systems, and the regulation of auxin and brassinosteroid (BR) signaling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemical and biophysical research communications
Biochemical and biophysical research communications 生物-生化与分子生物学
CiteScore
6.10
自引率
0.00%
发文量
1400
审稿时长
14 days
期刊介绍: Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology ; molecular biology; neurobiology; plant biology and proteomics
期刊最新文献
PIKFYVE deficiency induces vacuole-like cataract via perturbing late endosome homeostasis. Itaconate drives pro-inflammatory responses through proteasomal degradation of GLO1. ATG9 promotes autophagosome formation through interaction with LC3. Chemical inhibition of eIF4A3 abolishes UPF1 recruitment onto mRNA encoding NMD factors and restores their expression. Investigating the self-healing potential of polycystic ovary syndrome in a mouse model: Implications for offspring health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1