{"title":"基于拓扑的蛋白质分类:一种深度学习方法。","authors":"Aliye Sadat Hashemi, Iosif I. Vaisman","doi":"10.1016/j.bbrc.2024.151240","DOIUrl":null,"url":null,"abstract":"<div><div>Utilizing Artificial Intelligence (AI) in computational biology techniques could offer significant advantages in alleviating the growing workloads faced by structural biologists, especially with the emergence of big data. In this study, we employed Delaunay tessellation as a promising method to obtain the overall structural topology of proteins. Subsequently, we developed multi-class deep neural network models to classify protein superfamilies based on their local topology. Our models achieved a test accuracy of approximately 0.92 in classifying proteins into 18 well-populated superfamilies. We believe that the results of this study hold substantial value since, to the best of our knowledge, no previous studies have reported the utilization of protein topological data for protein classification through deep learning and Delaunay tessellation.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"746 ","pages":"Article 151240"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topology-based protein classification: A deep learning approach\",\"authors\":\"Aliye Sadat Hashemi, Iosif I. Vaisman\",\"doi\":\"10.1016/j.bbrc.2024.151240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Utilizing Artificial Intelligence (AI) in computational biology techniques could offer significant advantages in alleviating the growing workloads faced by structural biologists, especially with the emergence of big data. In this study, we employed Delaunay tessellation as a promising method to obtain the overall structural topology of proteins. Subsequently, we developed multi-class deep neural network models to classify protein superfamilies based on their local topology. Our models achieved a test accuracy of approximately 0.92 in classifying proteins into 18 well-populated superfamilies. We believe that the results of this study hold substantial value since, to the best of our knowledge, no previous studies have reported the utilization of protein topological data for protein classification through deep learning and Delaunay tessellation.</div></div>\",\"PeriodicalId\":8779,\"journal\":{\"name\":\"Biochemical and biophysical research communications\",\"volume\":\"746 \",\"pages\":\"Article 151240\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical and biophysical research communications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0006291X24017765\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X24017765","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Topology-based protein classification: A deep learning approach
Utilizing Artificial Intelligence (AI) in computational biology techniques could offer significant advantages in alleviating the growing workloads faced by structural biologists, especially with the emergence of big data. In this study, we employed Delaunay tessellation as a promising method to obtain the overall structural topology of proteins. Subsequently, we developed multi-class deep neural network models to classify protein superfamilies based on their local topology. Our models achieved a test accuracy of approximately 0.92 in classifying proteins into 18 well-populated superfamilies. We believe that the results of this study hold substantial value since, to the best of our knowledge, no previous studies have reported the utilization of protein topological data for protein classification through deep learning and Delaunay tessellation.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics