{"title":"连翘苷A通过内质网应激- nlrp3炎性体通路减轻链脲佐菌素诱导糖尿病心肌损伤。","authors":"Chuanpu Shen , Qing Zhang","doi":"10.1016/j.intimp.2024.113956","DOIUrl":null,"url":null,"abstract":"<div><div>The aim of this study was to evaluate for the effects of forsythiaside A (FA) on myocardial injury in streptozotocin (STZ)-induced diabetes mice. Blood glucose (BG), serum triglycerides (TG), lactate dehydrogenase (LDH), creatine kinase isoenzyme (CK-MB), cardiac troponin (cTnI), malondialdehyde (MDA), superoxide dismutase (SOD) levels were detected in STZ mice. The structure and function of heart was observed via cardiac ultrasound. Cytokine levels in mouse serum and heart were detected using enzyme-linked immunosorbent assay (ELISA) as well as TG, LDH, CK-MB, cTnI, MDA and SOD in high glucose (Glu) induced H9c2 cells. Western blot detection of the expression of endoplasmic reticulum stress-related TXNIP/NLRP3 inflammasome pathways (GRP78, PERK, P-PERK, EIF-α, P-EIF-α, XBP1, ATF6, TXNIP and NLRP3) in SCD mice and LCG induced H9c2 cells. Endoplasmic reticulum stress activator tunicamycin (TM) was used to validate the above pathway for FA. It was also found that FA had protective effects on myocardial injury in STZ mice via restored heart function, improved cardiac pathological changes and suppressed inflammatory response as well as in Glu induced H9c2 cells. In conclusion, FA alleviated myocardial injury in diabetes via endoplasmic reticulum stress-NLRP3 inflammasome pathway.</div></div>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":"147 ","pages":"Article 113956"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forsythiaside A alleviates myocardial injury in streptozotocin-induced diabetes via endoplasmic reticulum stress-NLRP3 inflammasome pathway\",\"authors\":\"Chuanpu Shen , Qing Zhang\",\"doi\":\"10.1016/j.intimp.2024.113956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The aim of this study was to evaluate for the effects of forsythiaside A (FA) on myocardial injury in streptozotocin (STZ)-induced diabetes mice. Blood glucose (BG), serum triglycerides (TG), lactate dehydrogenase (LDH), creatine kinase isoenzyme (CK-MB), cardiac troponin (cTnI), malondialdehyde (MDA), superoxide dismutase (SOD) levels were detected in STZ mice. The structure and function of heart was observed via cardiac ultrasound. Cytokine levels in mouse serum and heart were detected using enzyme-linked immunosorbent assay (ELISA) as well as TG, LDH, CK-MB, cTnI, MDA and SOD in high glucose (Glu) induced H9c2 cells. Western blot detection of the expression of endoplasmic reticulum stress-related TXNIP/NLRP3 inflammasome pathways (GRP78, PERK, P-PERK, EIF-α, P-EIF-α, XBP1, ATF6, TXNIP and NLRP3) in SCD mice and LCG induced H9c2 cells. Endoplasmic reticulum stress activator tunicamycin (TM) was used to validate the above pathway for FA. It was also found that FA had protective effects on myocardial injury in STZ mice via restored heart function, improved cardiac pathological changes and suppressed inflammatory response as well as in Glu induced H9c2 cells. In conclusion, FA alleviated myocardial injury in diabetes via endoplasmic reticulum stress-NLRP3 inflammasome pathway.</div></div>\",\"PeriodicalId\":13859,\"journal\":{\"name\":\"International immunopharmacology\",\"volume\":\"147 \",\"pages\":\"Article 113956\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International immunopharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567576924024780\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567576924024780","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Forsythiaside A alleviates myocardial injury in streptozotocin-induced diabetes via endoplasmic reticulum stress-NLRP3 inflammasome pathway
The aim of this study was to evaluate for the effects of forsythiaside A (FA) on myocardial injury in streptozotocin (STZ)-induced diabetes mice. Blood glucose (BG), serum triglycerides (TG), lactate dehydrogenase (LDH), creatine kinase isoenzyme (CK-MB), cardiac troponin (cTnI), malondialdehyde (MDA), superoxide dismutase (SOD) levels were detected in STZ mice. The structure and function of heart was observed via cardiac ultrasound. Cytokine levels in mouse serum and heart were detected using enzyme-linked immunosorbent assay (ELISA) as well as TG, LDH, CK-MB, cTnI, MDA and SOD in high glucose (Glu) induced H9c2 cells. Western blot detection of the expression of endoplasmic reticulum stress-related TXNIP/NLRP3 inflammasome pathways (GRP78, PERK, P-PERK, EIF-α, P-EIF-α, XBP1, ATF6, TXNIP and NLRP3) in SCD mice and LCG induced H9c2 cells. Endoplasmic reticulum stress activator tunicamycin (TM) was used to validate the above pathway for FA. It was also found that FA had protective effects on myocardial injury in STZ mice via restored heart function, improved cardiac pathological changes and suppressed inflammatory response as well as in Glu induced H9c2 cells. In conclusion, FA alleviated myocardial injury in diabetes via endoplasmic reticulum stress-NLRP3 inflammasome pathway.
期刊介绍:
International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome.
The subject material appropriate for submission includes:
• Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders.
• Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state.
• Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses.
• Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action.
• Agents that activate genes or modify transcription and translation within the immune response.
• Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active.
• Production, function and regulation of cytokines and their receptors.
• Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.