{"title":"液泡H+- atp酶和巨噬细胞蛋白介导的原肾素摄取:关注(Pro)肾素受体以外的元素。","authors":"Na Wang, Xifeng Lu, A. H. Jan Danser","doi":"10.1002/jcp.31518","DOIUrl":null,"url":null,"abstract":"<p>Megalin is a multiple-ligand receptor that contributes to protein reabsorption in the kidney. Recently, megalin was found to act as a novel endocytic receptor for prorenin. Internalization depended on the (pro)renin receptor. This receptor is an accessory protein of vacuolar H<sup>+</sup>-ATPase (V-ATPase), a complex consisting of 14 subunits and two accessory proteins. Here we explored whether V-ATPase elements other than the (P)RR affect megalin-mediated prorenin uptake. Using RNAi technology, we inhibited each individual V-ATPase subunit in megalin-expressing BN16 cells. Subsequently, we quantified megalin expression and the uptake of prorenin. To unravel the underlying molecular mechanisms, we investigated the adaptor proteins autosomal recessive hypercholesterolemia (ARH) and Disabled-2 (Dab2), which are important for the endocytosis of megalin, glycogen synthase kinase 3β (GSK3β), a regulatory factor of megalin recycling, and endoplasmic reticulum stress factors (ERSF). Silencing subunit <i>Atp6v</i><sub><i>o</i></sub><i>a1</i> reduced prorenin uptake by 19%, while silencing accessory protein <i>Atp6ap1</i> increased it by 15%. Silencing other subunits exerted a more modest or no effect. Silencing <i>Atp6v</i><sub><i>o</i></sub><i>a1</i> reduced surface megalin density, without altering its mRNA and protein levels, and this was associated with increased GSK3β phosphorylation and no change in ARH, Dab2, and ERSF. Silencing <i>Atp6ap1</i> increased megalin mRNA and protein expression and this was accompanied by upregulation of ARH and ERSF, while Dab2 expression was unaltered. In conclusion, V-ATPase units differently affect megalin-mediated reabsorption of prorenin, thereby offering novel pharmacological targets to not only affect renal renin-angiotensin system activity, but also to treat renal diseases that are associated with disturbed protein reabsorption, like Dent's disease.</p>","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":"240 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11694337/pdf/","citationCount":"0","resultStr":"{\"title\":\"Vacuolar H+-ATPase and Megalin-Mediated Prorenin Uptake: Focus on Elements Beyond the (Pro)Renin Receptor\",\"authors\":\"Na Wang, Xifeng Lu, A. H. Jan Danser\",\"doi\":\"10.1002/jcp.31518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Megalin is a multiple-ligand receptor that contributes to protein reabsorption in the kidney. Recently, megalin was found to act as a novel endocytic receptor for prorenin. Internalization depended on the (pro)renin receptor. This receptor is an accessory protein of vacuolar H<sup>+</sup>-ATPase (V-ATPase), a complex consisting of 14 subunits and two accessory proteins. Here we explored whether V-ATPase elements other than the (P)RR affect megalin-mediated prorenin uptake. Using RNAi technology, we inhibited each individual V-ATPase subunit in megalin-expressing BN16 cells. Subsequently, we quantified megalin expression and the uptake of prorenin. To unravel the underlying molecular mechanisms, we investigated the adaptor proteins autosomal recessive hypercholesterolemia (ARH) and Disabled-2 (Dab2), which are important for the endocytosis of megalin, glycogen synthase kinase 3β (GSK3β), a regulatory factor of megalin recycling, and endoplasmic reticulum stress factors (ERSF). Silencing subunit <i>Atp6v</i><sub><i>o</i></sub><i>a1</i> reduced prorenin uptake by 19%, while silencing accessory protein <i>Atp6ap1</i> increased it by 15%. Silencing other subunits exerted a more modest or no effect. Silencing <i>Atp6v</i><sub><i>o</i></sub><i>a1</i> reduced surface megalin density, without altering its mRNA and protein levels, and this was associated with increased GSK3β phosphorylation and no change in ARH, Dab2, and ERSF. Silencing <i>Atp6ap1</i> increased megalin mRNA and protein expression and this was accompanied by upregulation of ARH and ERSF, while Dab2 expression was unaltered. In conclusion, V-ATPase units differently affect megalin-mediated reabsorption of prorenin, thereby offering novel pharmacological targets to not only affect renal renin-angiotensin system activity, but also to treat renal diseases that are associated with disturbed protein reabsorption, like Dent's disease.</p>\",\"PeriodicalId\":15220,\"journal\":{\"name\":\"Journal of Cellular Physiology\",\"volume\":\"240 1\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11694337/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cellular Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcp.31518\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Physiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcp.31518","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Vacuolar H+-ATPase and Megalin-Mediated Prorenin Uptake: Focus on Elements Beyond the (Pro)Renin Receptor
Megalin is a multiple-ligand receptor that contributes to protein reabsorption in the kidney. Recently, megalin was found to act as a novel endocytic receptor for prorenin. Internalization depended on the (pro)renin receptor. This receptor is an accessory protein of vacuolar H+-ATPase (V-ATPase), a complex consisting of 14 subunits and two accessory proteins. Here we explored whether V-ATPase elements other than the (P)RR affect megalin-mediated prorenin uptake. Using RNAi technology, we inhibited each individual V-ATPase subunit in megalin-expressing BN16 cells. Subsequently, we quantified megalin expression and the uptake of prorenin. To unravel the underlying molecular mechanisms, we investigated the adaptor proteins autosomal recessive hypercholesterolemia (ARH) and Disabled-2 (Dab2), which are important for the endocytosis of megalin, glycogen synthase kinase 3β (GSK3β), a regulatory factor of megalin recycling, and endoplasmic reticulum stress factors (ERSF). Silencing subunit Atp6voa1 reduced prorenin uptake by 19%, while silencing accessory protein Atp6ap1 increased it by 15%. Silencing other subunits exerted a more modest or no effect. Silencing Atp6voa1 reduced surface megalin density, without altering its mRNA and protein levels, and this was associated with increased GSK3β phosphorylation and no change in ARH, Dab2, and ERSF. Silencing Atp6ap1 increased megalin mRNA and protein expression and this was accompanied by upregulation of ARH and ERSF, while Dab2 expression was unaltered. In conclusion, V-ATPase units differently affect megalin-mediated reabsorption of prorenin, thereby offering novel pharmacological targets to not only affect renal renin-angiotensin system activity, but also to treat renal diseases that are associated with disturbed protein reabsorption, like Dent's disease.
期刊介绍:
The Journal of Cellular Physiology publishes reports of high biological significance in areas of eukaryotic cell biology and physiology, focusing on those articles that adopt a molecular mechanistic approach to investigate cell structure and function. There is appreciation for the application of cellular, biochemical, molecular and in vivo genetic approaches, as well as the power of genomics, proteomics, bioinformatics and systems biology. In particular, the Journal encourages submission of high-interest papers investigating the genetic and epigenetic regulation of proliferation and phenotype as well as cell fate and lineage commitment by growth factors, cytokines and their cognate receptors and signal transduction pathways that influence the expression, integration and activities of these physiological mediators. Similarly, the Journal encourages submission of manuscripts exploring the regulation of growth and differentiation by cell adhesion molecules in addition to the interplay between these processes and those induced by growth factors and cytokines. Studies on the genes and processes that regulate cell cycle progression and phase transition in eukaryotic cells, and the mechanisms that determine whether cells enter quiescence, proliferate or undergo apoptosis are also welcomed. Submission of papers that address contributions of the extracellular matrix to cellular phenotypes and physiological control as well as regulatory mechanisms governing fertilization, embryogenesis, gametogenesis, cell fate, lineage commitment, differentiation, development and dynamic parameters of cell motility are encouraged. Finally, the investigation of stem cells and changes that differentiate cancer cells from normal cells including studies on the properties and functions of oncogenes and tumor suppressor genes will remain as one of the major interests of the Journal.