从血清学上讲,我们是否已做好应对禽流感大流行的准备?季节性流感疫苗能否对我们有所帮助?

IF 5.1 1区 生物学 Q1 MICROBIOLOGY mBio Pub Date : 2025-02-05 Epub Date: 2024-12-31 DOI:10.1128/mbio.03721-24
Iván Sanz-Muñoz, Javier Sánchez-Martínez, Carla Rodríguez-Crespo, Corina S Concha-Santos, Marta Hernández, Silvia Rojo-Rello, Marta Domínguez-Gil, Ahmed Mostafa, Luis Martinez-Sobrido, Jose M Eiros, Aitor Nogales
{"title":"从血清学上讲,我们是否已做好应对禽流感大流行的准备?季节性流感疫苗能否对我们有所帮助?","authors":"Iván Sanz-Muñoz, Javier Sánchez-Martínez, Carla Rodríguez-Crespo, Corina S Concha-Santos, Marta Hernández, Silvia Rojo-Rello, Marta Domínguez-Gil, Ahmed Mostafa, Luis Martinez-Sobrido, Jose M Eiros, Aitor Nogales","doi":"10.1128/mbio.03721-24","DOIUrl":null,"url":null,"abstract":"<p><p>The current situation with H5N1 highly pathogenic avian influenza virus (HPAI) is causing a worldwide concern due to multiple outbreaks in wild birds, poultry, and mammals. Moreover, multiple zoonotic infections in humans have been reported. Importantly, HPAI H5N1 viruses with genetic markers of adaptation to mammals have been detected. Together with HPAI H5N1, avian influenza viruses H7N9 (high and low pathogenic) stand out due to their high mortality rates in humans. This raises the question of how prepared we are serologically and whether seasonal vaccines are capable of inducing protective immunity against these influenza subtypes. An observational study was conducted in which sera from people born between years 1925-1967, 1968-1977, and 1978-1997 were collected before or after 28 days or 6 months post-vaccination with an inactivated seasonal influenza vaccine. Then, hemagglutination inhibition, viral neutralization, and immunoassays were performed to assess the basal protective immunity of the population as well as the ability of seasonal influenza vaccines to induce protective responses. Our results indicate that subtype-specific serological protection against H5N1 and H7N9 in the representative Spanish population evaluated was limited or nonexistent. However, seasonal vaccination was able to increase the antibody titers to protective levels in a moderate percentage of people, probably due to cross-reactive responses. These findings demonstrate the importance of vaccination and suggest that seasonal influenza vaccines could be used as a first line of defense against an eventual pandemic caused by avian influenza viruses, to be followed immediately by the use of more specific pandemic vaccines.IMPORTANCEInfluenza A viruses (IAV) can infect and replicate in multiple mammalian and avian species. Avian influenza virus (AIV) is a highly contagious viral disease that occurs primarily in poultry and wild water birds. Due to the lack of population immunity in humans and ongoing evolution of AIV, there is a continuing risk that new IAV could emerge and rapidly spread worldwide, causing a pandemic, if the ability to transmit efficiently among humans was gained. The aim of this study is to analyze the basal protection and presence of antibodies against IAV H5N1 and H7N9 subtypes in the population from different ages. Moreover, we have evaluated the humoral response after immunization with a seasonal influenza vaccine. This study is strategically important to evaluate the level of population immunity that is a major factor when assessing the impact that an emerging IAV strain would have, and the role of seasonal vaccines to mitigate the effects of a pandemic.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0372124"},"PeriodicalIF":5.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11796349/pdf/","citationCount":"0","resultStr":"{\"title\":\"Are we serologically prepared against an avian influenza pandemic and could seasonal flu vaccines help us?\",\"authors\":\"Iván Sanz-Muñoz, Javier Sánchez-Martínez, Carla Rodríguez-Crespo, Corina S Concha-Santos, Marta Hernández, Silvia Rojo-Rello, Marta Domínguez-Gil, Ahmed Mostafa, Luis Martinez-Sobrido, Jose M Eiros, Aitor Nogales\",\"doi\":\"10.1128/mbio.03721-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The current situation with H5N1 highly pathogenic avian influenza virus (HPAI) is causing a worldwide concern due to multiple outbreaks in wild birds, poultry, and mammals. Moreover, multiple zoonotic infections in humans have been reported. Importantly, HPAI H5N1 viruses with genetic markers of adaptation to mammals have been detected. Together with HPAI H5N1, avian influenza viruses H7N9 (high and low pathogenic) stand out due to their high mortality rates in humans. This raises the question of how prepared we are serologically and whether seasonal vaccines are capable of inducing protective immunity against these influenza subtypes. An observational study was conducted in which sera from people born between years 1925-1967, 1968-1977, and 1978-1997 were collected before or after 28 days or 6 months post-vaccination with an inactivated seasonal influenza vaccine. Then, hemagglutination inhibition, viral neutralization, and immunoassays were performed to assess the basal protective immunity of the population as well as the ability of seasonal influenza vaccines to induce protective responses. Our results indicate that subtype-specific serological protection against H5N1 and H7N9 in the representative Spanish population evaluated was limited or nonexistent. However, seasonal vaccination was able to increase the antibody titers to protective levels in a moderate percentage of people, probably due to cross-reactive responses. These findings demonstrate the importance of vaccination and suggest that seasonal influenza vaccines could be used as a first line of defense against an eventual pandemic caused by avian influenza viruses, to be followed immediately by the use of more specific pandemic vaccines.IMPORTANCEInfluenza A viruses (IAV) can infect and replicate in multiple mammalian and avian species. Avian influenza virus (AIV) is a highly contagious viral disease that occurs primarily in poultry and wild water birds. Due to the lack of population immunity in humans and ongoing evolution of AIV, there is a continuing risk that new IAV could emerge and rapidly spread worldwide, causing a pandemic, if the ability to transmit efficiently among humans was gained. The aim of this study is to analyze the basal protection and presence of antibodies against IAV H5N1 and H7N9 subtypes in the population from different ages. Moreover, we have evaluated the humoral response after immunization with a seasonal influenza vaccine. This study is strategically important to evaluate the level of population immunity that is a major factor when assessing the impact that an emerging IAV strain would have, and the role of seasonal vaccines to mitigate the effects of a pandemic.</p>\",\"PeriodicalId\":18315,\"journal\":{\"name\":\"mBio\",\"volume\":\" \",\"pages\":\"e0372124\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11796349/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mBio\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/mbio.03721-24\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mBio","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mbio.03721-24","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

H5N1高致病性禽流感病毒(HPAI)目前的情况由于在野生鸟类、家禽和哺乳动物中多次暴发而引起全世界的关注。此外,已报告发生多人人畜共患感染。重要的是,已发现具有适应哺乳动物遗传标记的高致病性H5N1病毒。与H5N1型高致病性禽流感病毒一样,H7N9(高致病性和低致病性)因其在人类中的高死亡率而引人注目。这就提出了我们在血清学上准备得如何以及季节性疫苗是否能够诱导对这些流感亚型的保护性免疫的问题。进行了一项观察性研究,收集1925-1967年、1968-1977年和1978-1997年出生的人在接种灭活季节性流感疫苗前后28天或6个月的血清。然后,进行血凝抑制、病毒中和和免疫测定,以评估人群的基础保护性免疫以及季节性流感疫苗诱导保护性反应的能力。我们的结果表明,西班牙代表性人群对H5N1和H7N9亚型特异性血清学保护有限或不存在。然而,季节性疫苗接种能够在中等比例的人群中将抗体滴度提高到保护水平,这可能是由于交叉反应性反应。这些发现证明了疫苗接种的重要性,并表明季节性流感疫苗可作为抵御禽流感病毒最终引起的大流行的第一道防线,随后立即使用更具体的大流行疫苗。甲型流感病毒(IAV)可以在多种哺乳动物和鸟类中感染和复制。禽流感病毒(AIV)是一种高度传染性的病毒性疾病,主要发生在家禽和野生水鸟中。由于人类缺乏群体免疫力和AIV的持续进化,如果获得了在人类之间有效传播的能力,那么新的IAV可能出现并在世界范围内迅速传播,造成大流行的风险仍然存在。本研究的目的是分析不同年龄人群对禽流感病毒H5N1和H7N9亚型的基础保护和抗体存在情况。此外,我们已经评估了接种季节性流感疫苗后的体液反应。这项研究对于评估人群免疫水平具有重要的战略意义,这是评估新出现的IAV毒株可能产生的影响时的一个主要因素,以及季节性疫苗在减轻大流行影响方面的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Are we serologically prepared against an avian influenza pandemic and could seasonal flu vaccines help us?

The current situation with H5N1 highly pathogenic avian influenza virus (HPAI) is causing a worldwide concern due to multiple outbreaks in wild birds, poultry, and mammals. Moreover, multiple zoonotic infections in humans have been reported. Importantly, HPAI H5N1 viruses with genetic markers of adaptation to mammals have been detected. Together with HPAI H5N1, avian influenza viruses H7N9 (high and low pathogenic) stand out due to their high mortality rates in humans. This raises the question of how prepared we are serologically and whether seasonal vaccines are capable of inducing protective immunity against these influenza subtypes. An observational study was conducted in which sera from people born between years 1925-1967, 1968-1977, and 1978-1997 were collected before or after 28 days or 6 months post-vaccination with an inactivated seasonal influenza vaccine. Then, hemagglutination inhibition, viral neutralization, and immunoassays were performed to assess the basal protective immunity of the population as well as the ability of seasonal influenza vaccines to induce protective responses. Our results indicate that subtype-specific serological protection against H5N1 and H7N9 in the representative Spanish population evaluated was limited or nonexistent. However, seasonal vaccination was able to increase the antibody titers to protective levels in a moderate percentage of people, probably due to cross-reactive responses. These findings demonstrate the importance of vaccination and suggest that seasonal influenza vaccines could be used as a first line of defense against an eventual pandemic caused by avian influenza viruses, to be followed immediately by the use of more specific pandemic vaccines.IMPORTANCEInfluenza A viruses (IAV) can infect and replicate in multiple mammalian and avian species. Avian influenza virus (AIV) is a highly contagious viral disease that occurs primarily in poultry and wild water birds. Due to the lack of population immunity in humans and ongoing evolution of AIV, there is a continuing risk that new IAV could emerge and rapidly spread worldwide, causing a pandemic, if the ability to transmit efficiently among humans was gained. The aim of this study is to analyze the basal protection and presence of antibodies against IAV H5N1 and H7N9 subtypes in the population from different ages. Moreover, we have evaluated the humoral response after immunization with a seasonal influenza vaccine. This study is strategically important to evaluate the level of population immunity that is a major factor when assessing the impact that an emerging IAV strain would have, and the role of seasonal vaccines to mitigate the effects of a pandemic.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
mBio
mBio MICROBIOLOGY-
CiteScore
10.50
自引率
3.10%
发文量
762
审稿时长
1 months
期刊介绍: mBio® is ASM''s first broad-scope, online-only, open access journal. mBio offers streamlined review and publication of the best research in microbiology and allied fields.
期刊最新文献
Gene regulatory network resource aids in predicting trans-acting regulators of biosynthetic gene clusters in Aspergillus fumigatus. The Na+-K+-ATPase alpha subunit is an entry receptor for white spot syndrome virus. Identification of two glycosyltransferases required for synthesis of membrane glycolipids in Clostridioides difficile. Capsular polysaccharide enables Klebsiella pneumoniae to evade phagocytosis by blocking host-bacteria interactions. Rickettsial pathogen augments tick vesicular-associated membrane proteins for infection and survival in the vector host.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1