精确和可预测的细菌多顺反子基因表达控制的合成翻译耦合系统。

IF 6.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Metabolic engineering Pub Date : 2024-12-30 DOI:10.1016/j.ymben.2024.12.011
Yong Hee Han, Hyeon Jin Kim, Keonwoo Kim, Jina Yang, Sang Woo Seo
{"title":"精确和可预测的细菌多顺反子基因表达控制的合成翻译耦合系统。","authors":"Yong Hee Han, Hyeon Jin Kim, Keonwoo Kim, Jina Yang, Sang Woo Seo","doi":"10.1016/j.ymben.2024.12.011","DOIUrl":null,"url":null,"abstract":"<p><p>Precise and predictable genetic elements are required to address various issues, such as suboptimal metabolic flux or imbalanced protein assembly caused by the inadequate control of polycistronic gene expression in bacteria. Here, we devised a synthetic biopart based on the translational coupling to control polycistronic gene expression. This module links the translation of genes within a polycistronic mRNA, maintaining their expression ratios regardless of coding sequences, transcription rate, and upstream gene translation rate. By engineering the Shine-Dalgarno sequences within these synthetic bioparts, we adjusted the expression ratios of polycistronic genes. We created 41 bioparts with varied relative expression ratios, ranging from 0.03 to 0.92, enabling precise control of pathway enzyme gene expression in a polycistronic manner. This led to up to a 7.6-fold increase in the production of valuable biochemicals such as 3-hydroxypropionic acid, poly(3-hydroxybutyrate), and lycopene. Our work provides genetic regulatory modules for precise and predictable polycistronic gene expression, facilitating efficient protein assembly, biosynthetic gene cluster expression, and pathway optimization.</p>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":" ","pages":"148-159"},"PeriodicalIF":6.8000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthetic translational coupling system for accurate and predictable polycistronic gene expression control in bacteria.\",\"authors\":\"Yong Hee Han, Hyeon Jin Kim, Keonwoo Kim, Jina Yang, Sang Woo Seo\",\"doi\":\"10.1016/j.ymben.2024.12.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Precise and predictable genetic elements are required to address various issues, such as suboptimal metabolic flux or imbalanced protein assembly caused by the inadequate control of polycistronic gene expression in bacteria. Here, we devised a synthetic biopart based on the translational coupling to control polycistronic gene expression. This module links the translation of genes within a polycistronic mRNA, maintaining their expression ratios regardless of coding sequences, transcription rate, and upstream gene translation rate. By engineering the Shine-Dalgarno sequences within these synthetic bioparts, we adjusted the expression ratios of polycistronic genes. We created 41 bioparts with varied relative expression ratios, ranging from 0.03 to 0.92, enabling precise control of pathway enzyme gene expression in a polycistronic manner. This led to up to a 7.6-fold increase in the production of valuable biochemicals such as 3-hydroxypropionic acid, poly(3-hydroxybutyrate), and lycopene. Our work provides genetic regulatory modules for precise and predictable polycistronic gene expression, facilitating efficient protein assembly, biosynthetic gene cluster expression, and pathway optimization.</p>\",\"PeriodicalId\":18483,\"journal\":{\"name\":\"Metabolic engineering\",\"volume\":\" \",\"pages\":\"148-159\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolic engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ymben.2024.12.011\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ymben.2024.12.011","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

精确和可预测的遗传元件需要解决各种问题,如次优代谢通量或不平衡的蛋白质组装由细菌中多顺反子基因表达控制不足引起。在此,我们设计了一种基于翻译偶联的合成生物艺术来控制多顺反子基因的表达。该模块连接多顺反子mRNA内的基因翻译,维持其表达比,而不考虑编码序列,转录率和上游基因翻译率。通过在这些合成生物部件中设计Shine-Dalgarno序列,我们调整了多顺反子基因的表达比例。我们创建了41个相对表达率不同的生物部件,范围从0.03到0.92,能够以多顺反子方式精确控制途径酶基因的表达。这使得有价值的生物化学物质如3-羟基丙酸、聚(3-羟基丁酸酯)和番茄红素的产量增加了7.6倍。我们的工作为精确和可预测的多顺反子基因表达提供了遗传调控模块,促进了高效的蛋白质组装,生物合成基因簇表达和途径优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthetic translational coupling system for accurate and predictable polycistronic gene expression control in bacteria.

Precise and predictable genetic elements are required to address various issues, such as suboptimal metabolic flux or imbalanced protein assembly caused by the inadequate control of polycistronic gene expression in bacteria. Here, we devised a synthetic biopart based on the translational coupling to control polycistronic gene expression. This module links the translation of genes within a polycistronic mRNA, maintaining their expression ratios regardless of coding sequences, transcription rate, and upstream gene translation rate. By engineering the Shine-Dalgarno sequences within these synthetic bioparts, we adjusted the expression ratios of polycistronic genes. We created 41 bioparts with varied relative expression ratios, ranging from 0.03 to 0.92, enabling precise control of pathway enzyme gene expression in a polycistronic manner. This led to up to a 7.6-fold increase in the production of valuable biochemicals such as 3-hydroxypropionic acid, poly(3-hydroxybutyrate), and lycopene. Our work provides genetic regulatory modules for precise and predictable polycistronic gene expression, facilitating efficient protein assembly, biosynthetic gene cluster expression, and pathway optimization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metabolic engineering
Metabolic engineering 工程技术-生物工程与应用微生物
CiteScore
15.60
自引率
6.00%
发文量
140
审稿时长
44 days
期刊介绍: Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.
期刊最新文献
Prenol production in a microbial host via the "Repass" Pathways. Exploring and increased acetate biosynthesis in Synechocystis PCC 6803 through insertion of a heterologous phosphoketolase and overexpressing phosphotransacetylase. Introduction of acetyl-phosphate bypass and increased culture temperatures enhanced growth-coupled poly-hydroxybutyrate production in the marine cyanobacterium Synechococcus sp. PCC7002. Biosynthesis of 10-Hydroxy-2-Decenoic Acid in Escherichia coli. Unleashing the innate ability of Escherichia coli to produce D-Allose.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1