大肠杆菌生产藏红花素-二醛的无氧化裂解途径的蛋白质工程。

IF 6.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Metabolic engineering Pub Date : 2024-12-30 DOI:10.1016/j.ymben.2024.12.009
Jun Ho Lee, Jeong-Yang Park, Min-Duk Seo, Pyung Cheon Lee
{"title":"大肠杆菌生产藏红花素-二醛的无氧化裂解途径的蛋白质工程。","authors":"Jun Ho Lee, Jeong-Yang Park, Min-Duk Seo, Pyung Cheon Lee","doi":"10.1016/j.ymben.2024.12.009","DOIUrl":null,"url":null,"abstract":"<p><p>The growing depletion of petroleum resources and the increasing demand for sustainable alternatives have spurred advancements in microorganism-based biofactories. Among high-value compounds, carotenoids are widely sought after in pharmaceuticals, cosmetics, and nutrition, making them prime candidates for microbial production. In this study, we engineered an efficient biosynthetic pathway in Escherichia coli for the production of the C<sub>20</sub>-carotenoid crocetin-dialdehyde. By bypassing traditional oxidative cleavage reactions mediated by carotenoid cleavage dioxygenases (CCDs), our approach reduces the enzymatic complexity of the pathway. Using the crystal structure of a CrtMLIKE enzyme identified in this study, we developed a mutant enzyme capable of condensing two C<sub>10</sub>-geranyl pyrophosphate molecules to form C<sub>20</sub>-phytoene. This intermediate was then desaturated and oxidized by CrtN and CrtP to produce crocetin-dialdehyde, achieving a yield of 1.13 mg/L. By reducing enzyme requirements from six to three and eliminating the need for CCDs, this pathway alleviates metabolic stress on the host and enhances the scalability of production for industrial applications. Overall, our research presents a streamlined and innovative approach to carotenoid biosynthesis, advancing sustainable production methods for short-chain carotenoids.</p>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":" ","pages":"137-147"},"PeriodicalIF":6.8000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protein engineering of an oxidative cleavage-free pathway for crocetin-dialdehyde production in Escherichia coli.\",\"authors\":\"Jun Ho Lee, Jeong-Yang Park, Min-Duk Seo, Pyung Cheon Lee\",\"doi\":\"10.1016/j.ymben.2024.12.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The growing depletion of petroleum resources and the increasing demand for sustainable alternatives have spurred advancements in microorganism-based biofactories. Among high-value compounds, carotenoids are widely sought after in pharmaceuticals, cosmetics, and nutrition, making them prime candidates for microbial production. In this study, we engineered an efficient biosynthetic pathway in Escherichia coli for the production of the C<sub>20</sub>-carotenoid crocetin-dialdehyde. By bypassing traditional oxidative cleavage reactions mediated by carotenoid cleavage dioxygenases (CCDs), our approach reduces the enzymatic complexity of the pathway. Using the crystal structure of a CrtMLIKE enzyme identified in this study, we developed a mutant enzyme capable of condensing two C<sub>10</sub>-geranyl pyrophosphate molecules to form C<sub>20</sub>-phytoene. This intermediate was then desaturated and oxidized by CrtN and CrtP to produce crocetin-dialdehyde, achieving a yield of 1.13 mg/L. By reducing enzyme requirements from six to three and eliminating the need for CCDs, this pathway alleviates metabolic stress on the host and enhances the scalability of production for industrial applications. Overall, our research presents a streamlined and innovative approach to carotenoid biosynthesis, advancing sustainable production methods for short-chain carotenoids.</p>\",\"PeriodicalId\":18483,\"journal\":{\"name\":\"Metabolic engineering\",\"volume\":\" \",\"pages\":\"137-147\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolic engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ymben.2024.12.009\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ymben.2024.12.009","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

石油资源的日益枯竭和对可持续替代品的需求日益增长,推动了微生物生物工厂的发展。在高价值化合物中,类胡萝卜素在药品、化妆品和营养品中受到广泛追捧,这使它们成为微生物生产的主要候选者。在这项研究中,我们在大肠杆菌中设计了一种高效的生物合成途径来生产c20 -类胡萝卜素西红花素-二醛。通过绕过由类胡萝卜素裂解双加氧酶(CCDs)介导的传统氧化裂解反应,我们的方法降低了该途径的酶的复杂性。利用本研究中鉴定的CrtMLIKE酶的晶体结构,我们开发了一种能够凝聚两个c10 -香叶基焦磷酸分子形成c20 -植物烯的突变酶。然后将该中间体去饱和并被CrtN和CrtP氧化生成藏红花二醛,产率为1.13 mg/L。通过将酶的需要量从6个减少到3个,并消除对ccd的需求,该途径减轻了宿主的代谢压力,提高了工业应用的生产可扩展性。总的来说,我们的研究提出了一种简化和创新的类胡萝卜素生物合成方法,推进了短链类胡萝卜素的可持续生产方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Protein engineering of an oxidative cleavage-free pathway for crocetin-dialdehyde production in Escherichia coli.

The growing depletion of petroleum resources and the increasing demand for sustainable alternatives have spurred advancements in microorganism-based biofactories. Among high-value compounds, carotenoids are widely sought after in pharmaceuticals, cosmetics, and nutrition, making them prime candidates for microbial production. In this study, we engineered an efficient biosynthetic pathway in Escherichia coli for the production of the C20-carotenoid crocetin-dialdehyde. By bypassing traditional oxidative cleavage reactions mediated by carotenoid cleavage dioxygenases (CCDs), our approach reduces the enzymatic complexity of the pathway. Using the crystal structure of a CrtMLIKE enzyme identified in this study, we developed a mutant enzyme capable of condensing two C10-geranyl pyrophosphate molecules to form C20-phytoene. This intermediate was then desaturated and oxidized by CrtN and CrtP to produce crocetin-dialdehyde, achieving a yield of 1.13 mg/L. By reducing enzyme requirements from six to three and eliminating the need for CCDs, this pathway alleviates metabolic stress on the host and enhances the scalability of production for industrial applications. Overall, our research presents a streamlined and innovative approach to carotenoid biosynthesis, advancing sustainable production methods for short-chain carotenoids.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metabolic engineering
Metabolic engineering 工程技术-生物工程与应用微生物
CiteScore
15.60
自引率
6.00%
发文量
140
审稿时长
44 days
期刊介绍: Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.
期刊最新文献
Prenol production in a microbial host via the "Repass" Pathways. Exploring and increased acetate biosynthesis in Synechocystis PCC 6803 through insertion of a heterologous phosphoketolase and overexpressing phosphotransacetylase. Introduction of acetyl-phosphate bypass and increased culture temperatures enhanced growth-coupled poly-hydroxybutyrate production in the marine cyanobacterium Synechococcus sp. PCC7002. Biosynthesis of 10-Hydroxy-2-Decenoic Acid in Escherichia coli. Unleashing the innate ability of Escherichia coli to produce D-Allose.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1