{"title":"微生物对土壤有机碳组分的调节作用及其对长期气候变化的反馈","authors":"Xinqi SiMa, Rui Fang, Zhenhua Yu, Yansheng Li, Xiaojing Hu, Haidong Gu, Caixian Tang, Judong Liu, Junjie Liu, Xiaobing Liu, Guanghua Wang, Ashley Franks, Kuide Yin, Jian Jin","doi":"10.1007/s11104-024-07184-7","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Aims</h3><p>Understanding the long-term effects of elevated atmospheric CO<sub>2</sub> (eCO<sub>2</sub>) and warming on soil organic carbon (SOC), along with the microbial mechanisms involved, is important for predicting SOC stability in the context of future climate change.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>Open-top chambers were used to simulate an increase in the atmospheric CO<sub>2</sub> concentration to 700 ppm (eCO<sub>2</sub>) and an air temperature of 2 °C above the ambient temperature (warming) in a six-year experiment to examine the effects of eCO<sub>2</sub> and warming on the SOC fractions and bacterial community diversity. Maize plants were grown in four major farming soils, namely, Phaeozem, Kastanozem, Fluvisol and Acrisol.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Six years of eCO<sub>2</sub> did not increase the SOC concentration in any soil but altered the distribution of the SOC fractions. In comparison, eCO<sub>2</sub> and warming decreased fine particulate organic C (fPOC) but increased the mineral-associated organic C (MOC) concentrations in Phaeozem and Kastanozem. In comparison, eCO<sub>2</sub> and warming significantly decreased the MOC in Fluvisol and tended to increase it in Acrisol. For Phaeozem, Kastanozem and Acrisol, fPOC was negatively correlated with MOC (<i>p</i> < 0.05). Warming altered the bacterial community composition in Kastanozem, Acrisol and Fluvisol. The increased abundance of <i>Aquicella</i> in Fluvisol under eCO<sub>2</sub> and warming was associated with accelerated MOC decomposition.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>Long-term eCO<sub>2</sub> and warming might not alter the SOC stock but affect the bacterial community, accelerating C turnover among different SOC pools. The decrease in the MOC fraction of Fluvisol raises concerns about the SOC sustainability of this soil under climate change.\n</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"72 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microbial mediation of soil organic carbon fractions and its feedback to long-term climate change\",\"authors\":\"Xinqi SiMa, Rui Fang, Zhenhua Yu, Yansheng Li, Xiaojing Hu, Haidong Gu, Caixian Tang, Judong Liu, Junjie Liu, Xiaobing Liu, Guanghua Wang, Ashley Franks, Kuide Yin, Jian Jin\",\"doi\":\"10.1007/s11104-024-07184-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Aims</h3><p>Understanding the long-term effects of elevated atmospheric CO<sub>2</sub> (eCO<sub>2</sub>) and warming on soil organic carbon (SOC), along with the microbial mechanisms involved, is important for predicting SOC stability in the context of future climate change.</p><h3 data-test=\\\"abstract-sub-heading\\\">Methods</h3><p>Open-top chambers were used to simulate an increase in the atmospheric CO<sub>2</sub> concentration to 700 ppm (eCO<sub>2</sub>) and an air temperature of 2 °C above the ambient temperature (warming) in a six-year experiment to examine the effects of eCO<sub>2</sub> and warming on the SOC fractions and bacterial community diversity. Maize plants were grown in four major farming soils, namely, Phaeozem, Kastanozem, Fluvisol and Acrisol.</p><h3 data-test=\\\"abstract-sub-heading\\\">Results</h3><p>Six years of eCO<sub>2</sub> did not increase the SOC concentration in any soil but altered the distribution of the SOC fractions. In comparison, eCO<sub>2</sub> and warming decreased fine particulate organic C (fPOC) but increased the mineral-associated organic C (MOC) concentrations in Phaeozem and Kastanozem. In comparison, eCO<sub>2</sub> and warming significantly decreased the MOC in Fluvisol and tended to increase it in Acrisol. For Phaeozem, Kastanozem and Acrisol, fPOC was negatively correlated with MOC (<i>p</i> < 0.05). Warming altered the bacterial community composition in Kastanozem, Acrisol and Fluvisol. The increased abundance of <i>Aquicella</i> in Fluvisol under eCO<sub>2</sub> and warming was associated with accelerated MOC decomposition.</p><h3 data-test=\\\"abstract-sub-heading\\\">Conclusions</h3><p>Long-term eCO<sub>2</sub> and warming might not alter the SOC stock but affect the bacterial community, accelerating C turnover among different SOC pools. The decrease in the MOC fraction of Fluvisol raises concerns about the SOC sustainability of this soil under climate change.\\n</p>\",\"PeriodicalId\":20223,\"journal\":{\"name\":\"Plant and Soil\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant and Soil\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11104-024-07184-7\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11104-024-07184-7","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Microbial mediation of soil organic carbon fractions and its feedback to long-term climate change
Aims
Understanding the long-term effects of elevated atmospheric CO2 (eCO2) and warming on soil organic carbon (SOC), along with the microbial mechanisms involved, is important for predicting SOC stability in the context of future climate change.
Methods
Open-top chambers were used to simulate an increase in the atmospheric CO2 concentration to 700 ppm (eCO2) and an air temperature of 2 °C above the ambient temperature (warming) in a six-year experiment to examine the effects of eCO2 and warming on the SOC fractions and bacterial community diversity. Maize plants were grown in four major farming soils, namely, Phaeozem, Kastanozem, Fluvisol and Acrisol.
Results
Six years of eCO2 did not increase the SOC concentration in any soil but altered the distribution of the SOC fractions. In comparison, eCO2 and warming decreased fine particulate organic C (fPOC) but increased the mineral-associated organic C (MOC) concentrations in Phaeozem and Kastanozem. In comparison, eCO2 and warming significantly decreased the MOC in Fluvisol and tended to increase it in Acrisol. For Phaeozem, Kastanozem and Acrisol, fPOC was negatively correlated with MOC (p < 0.05). Warming altered the bacterial community composition in Kastanozem, Acrisol and Fluvisol. The increased abundance of Aquicella in Fluvisol under eCO2 and warming was associated with accelerated MOC decomposition.
Conclusions
Long-term eCO2 and warming might not alter the SOC stock but affect the bacterial community, accelerating C turnover among different SOC pools. The decrease in the MOC fraction of Fluvisol raises concerns about the SOC sustainability of this soil under climate change.
期刊介绍:
Plant and Soil publishes original papers and review articles exploring the interface of plant biology and soil sciences, and that enhance our mechanistic understanding of plant-soil interactions. We focus on the interface of plant biology and soil sciences, and seek those manuscripts with a strong mechanistic component which develop and test hypotheses aimed at understanding underlying mechanisms of plant-soil interactions. Manuscripts can include both fundamental and applied aspects of mineral nutrition, plant water relations, symbiotic and pathogenic plant-microbe interactions, root anatomy and morphology, soil biology, ecology, agrochemistry and agrophysics, as long as they are hypothesis-driven and enhance our mechanistic understanding. Articles including a major molecular or modelling component also fall within the scope of the journal. All contributions appear in the English language, with consistent spelling, using either American or British English.