红树林的氮磷保护和权衡

IF 3.9 2区 农林科学 Q1 AGRONOMY Plant and Soil Pub Date : 2025-01-03 DOI:10.1007/s11104-024-07130-7
Muhammad Ishfaq, Nora Fung-Yee Tam, Tao Lang, Muzammil Hussain, Haichao Zhou
{"title":"红树林的氮磷保护和权衡","authors":"Muhammad Ishfaq, Nora Fung-Yee Tam, Tao Lang, Muzammil Hussain, Haichao Zhou","doi":"10.1007/s11104-024-07130-7","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background and scope</h3><p>Mangroves distributed in intertidal zones along tropical and subtropical coastlines play key roles in nutrient cycling, energy transfer, and maintenance of ecosystem balance. The maintenance of mangroves’ high productivity and ecosystem functionality in nutrient-limited environmental conditions is very important. This paper comprehensively elucidates how mangroves sustain ecological balance and survive in nutrient-limited coastal environments.</p><h3 data-test=\"abstract-sub-heading\">Methods and results</h3><p>The foliar nitrogen and phosphorus (N-P) concentrations and N:P ratios in different mangrove plant species and regions of the world are summarized, and results show that 73.7% and 16.4% of mangrove plants are N- and P-deficient, respectively. A comprehensive overview on the strategies employed by mangrove plants to conserve N-P in both above- and below-ground components is discussed. These strategies include N-P resorption efficiency, in short NRE and PRE, respectively, N-P use efficiency, litter quality, soil microbial activity, and N-P turnover rate. All these strategies are influenced by N-P content and their interactions, as well as secondary metabolites such as total phenolics and tannins in leaf and litter. Published data reveal mangrove leaves have higher NRE (56.2%) than PRE (48.8%), and NRE positively relates to PRE. Nutrient uptake by mangrove plants and N-P availability under different conditions, particularly global warming, rising sea levels and elevated atmospheric carbon dioxide (CO<sub>2</sub>) situations, are discussed. A framework for gaining in-depth and targeted understanding of the trade-offs associated with N-P in mangrove ecosystems is proposed.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>This comprehensive overview, based on the published results on N and P conservation and their trade-off in mangrove plants, provides useful information on ecological services and functioning of mangrove wetlands.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"23 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nitrogen-phosphorus conservation and trade-offs in mangroves\",\"authors\":\"Muhammad Ishfaq, Nora Fung-Yee Tam, Tao Lang, Muzammil Hussain, Haichao Zhou\",\"doi\":\"10.1007/s11104-024-07130-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Background and scope</h3><p>Mangroves distributed in intertidal zones along tropical and subtropical coastlines play key roles in nutrient cycling, energy transfer, and maintenance of ecosystem balance. The maintenance of mangroves’ high productivity and ecosystem functionality in nutrient-limited environmental conditions is very important. This paper comprehensively elucidates how mangroves sustain ecological balance and survive in nutrient-limited coastal environments.</p><h3 data-test=\\\"abstract-sub-heading\\\">Methods and results</h3><p>The foliar nitrogen and phosphorus (N-P) concentrations and N:P ratios in different mangrove plant species and regions of the world are summarized, and results show that 73.7% and 16.4% of mangrove plants are N- and P-deficient, respectively. A comprehensive overview on the strategies employed by mangrove plants to conserve N-P in both above- and below-ground components is discussed. These strategies include N-P resorption efficiency, in short NRE and PRE, respectively, N-P use efficiency, litter quality, soil microbial activity, and N-P turnover rate. All these strategies are influenced by N-P content and their interactions, as well as secondary metabolites such as total phenolics and tannins in leaf and litter. Published data reveal mangrove leaves have higher NRE (56.2%) than PRE (48.8%), and NRE positively relates to PRE. Nutrient uptake by mangrove plants and N-P availability under different conditions, particularly global warming, rising sea levels and elevated atmospheric carbon dioxide (CO<sub>2</sub>) situations, are discussed. A framework for gaining in-depth and targeted understanding of the trade-offs associated with N-P in mangrove ecosystems is proposed.</p><h3 data-test=\\\"abstract-sub-heading\\\">Conclusion</h3><p>This comprehensive overview, based on the published results on N and P conservation and their trade-off in mangrove plants, provides useful information on ecological services and functioning of mangrove wetlands.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\\n\",\"PeriodicalId\":20223,\"journal\":{\"name\":\"Plant and Soil\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant and Soil\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11104-024-07130-7\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11104-024-07130-7","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

分布在热带和亚热带沿海潮间带的红树林在养分循环、能量传递和维持生态系统平衡中起着关键作用。在营养有限的环境条件下,维持红树林的高生产力和生态系统功能是非常重要的。本文全面阐述了红树林如何在营养有限的沿海环境中维持生态平衡和生存。方法与结果总结了世界不同树种和地区红树林叶片氮磷(N-P)浓度和N:P比值,结果表明73.7%和16.4%的红树林植物分别处于缺氮和缺磷状态。本文综述了红树林植物在地上和地下组分中保存氮磷的策略。这些策略包括氮磷吸收效率,即NRE和PRE,氮磷利用效率,凋落物质量,土壤微生物活性和氮磷周转率。所有这些策略都受N-P含量及其相互作用以及叶片和凋落物中总酚和单宁等次生代谢产物的影响。已发表的数据显示,红树林叶片的NRE(56.2%)高于PRE(48.8%),且NRE与PRE呈正相关。本文讨论了不同条件下,特别是全球变暖、海平面上升和大气二氧化碳(CO2)升高情况下红树林植物的养分吸收和N-P有效性。提出了一个深入和有针对性地了解红树林生态系统中与N-P相关的权衡的框架。结论基于已发表的红树林植物氮磷保护及其权衡研究成果,本综述为红树林湿地的生态服务和功能提供了有用的信息。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nitrogen-phosphorus conservation and trade-offs in mangroves

Background and scope

Mangroves distributed in intertidal zones along tropical and subtropical coastlines play key roles in nutrient cycling, energy transfer, and maintenance of ecosystem balance. The maintenance of mangroves’ high productivity and ecosystem functionality in nutrient-limited environmental conditions is very important. This paper comprehensively elucidates how mangroves sustain ecological balance and survive in nutrient-limited coastal environments.

Methods and results

The foliar nitrogen and phosphorus (N-P) concentrations and N:P ratios in different mangrove plant species and regions of the world are summarized, and results show that 73.7% and 16.4% of mangrove plants are N- and P-deficient, respectively. A comprehensive overview on the strategies employed by mangrove plants to conserve N-P in both above- and below-ground components is discussed. These strategies include N-P resorption efficiency, in short NRE and PRE, respectively, N-P use efficiency, litter quality, soil microbial activity, and N-P turnover rate. All these strategies are influenced by N-P content and their interactions, as well as secondary metabolites such as total phenolics and tannins in leaf and litter. Published data reveal mangrove leaves have higher NRE (56.2%) than PRE (48.8%), and NRE positively relates to PRE. Nutrient uptake by mangrove plants and N-P availability under different conditions, particularly global warming, rising sea levels and elevated atmospheric carbon dioxide (CO2) situations, are discussed. A framework for gaining in-depth and targeted understanding of the trade-offs associated with N-P in mangrove ecosystems is proposed.

Conclusion

This comprehensive overview, based on the published results on N and P conservation and their trade-off in mangrove plants, provides useful information on ecological services and functioning of mangrove wetlands.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant and Soil
Plant and Soil 农林科学-农艺学
CiteScore
8.20
自引率
8.20%
发文量
543
审稿时长
2.5 months
期刊介绍: Plant and Soil publishes original papers and review articles exploring the interface of plant biology and soil sciences, and that enhance our mechanistic understanding of plant-soil interactions. We focus on the interface of plant biology and soil sciences, and seek those manuscripts with a strong mechanistic component which develop and test hypotheses aimed at understanding underlying mechanisms of plant-soil interactions. Manuscripts can include both fundamental and applied aspects of mineral nutrition, plant water relations, symbiotic and pathogenic plant-microbe interactions, root anatomy and morphology, soil biology, ecology, agrochemistry and agrophysics, as long as they are hypothesis-driven and enhance our mechanistic understanding. Articles including a major molecular or modelling component also fall within the scope of the journal. All contributions appear in the English language, with consistent spelling, using either American or British English.
期刊最新文献
Adaptation strategies of three legumes to soil phosphorus availability in steppes of Inner Mongolia Linkage between plant nitrogen preference and rhizosphere effects on soil nitrogen transformation reveals a plant resource adaptive strategies in nitrogen-limited soils Water consumption turning point for Robinia pseudoacacia occurs at its middle stand age The divergent response of fungal and bacterial necromass carbon in soil aggregates under biochar amendment in paddy soil Flooding-driven gravel encroachment reshapes plant community structure and reduces community stability in an arid alluvial fan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1