{"title":"基于边界回归和结构重参数化的核实例分割模型","authors":"Shengchun Xiong, Xiangru Li, Yunpeng Zhong, Wanfen Peng","doi":"10.1007/s11263-024-02332-z","DOIUrl":null,"url":null,"abstract":"<p>Pathological diagnosis is the gold standard for tumor diagnosis, and nucleus instance segmentation is a key step in digital pathology analysis and pathological diagnosis. However, the computational efficiency of the model and the treatment of overlapping targets are the major challenges in the studies of this problem. To this end, a neural network model RepSNet was designed based on a nucleus boundary regression and a structural re-parameterization scheme for segmenting and classifying the nuclei in H&E-stained histopathological images. First, RepSNet estimates the boundary position information (BPI) of the parent nucleus for each pixel. The BPI estimation incorporates the local information of the pixel and the contextual information of the parent nucleus. Then, the nucleus boundary is estimated by aggregating the BPIs from a series of pixels using a proposed boundary voting mechanism (BVM), and the instance segmentation results are computed from the estimated nucleus boundary using a connected component analysis procedure. The BVM intrinsically achieves a kind of synergistic belief enhancement among the BPIs from various pixels. Therefore, different from the methods available in literature that obtain nucleus boundaries based on a direct pixel recognition scheme, RepSNet computes its boundary decisions based on some guidances from macroscopic information using an integration mechanism. In addition, RepSNet employs a re-parametrizable encoder-decoder structure. This model can not only aggregate features from some receptive fields with various scales which helps segmentation accuracy improvement, but also reduce the parameter amount and computational burdens in the model inference phase through the structural re-parameterization technique. In the experimental comparisons and evaluations on the Lizard dataset, RepSNet demonstrated superior segmentation accuracy and inference speed compared to several typical benchmark models. The experimental code, dataset splitting configuration and the pre-trained model were released at https://github.com/luckyrz0/RepSNet.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"25 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RepSNet: A Nucleus Instance Segmentation Model Based on Boundary Regression and Structural Re-Parameterization\",\"authors\":\"Shengchun Xiong, Xiangru Li, Yunpeng Zhong, Wanfen Peng\",\"doi\":\"10.1007/s11263-024-02332-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Pathological diagnosis is the gold standard for tumor diagnosis, and nucleus instance segmentation is a key step in digital pathology analysis and pathological diagnosis. However, the computational efficiency of the model and the treatment of overlapping targets are the major challenges in the studies of this problem. To this end, a neural network model RepSNet was designed based on a nucleus boundary regression and a structural re-parameterization scheme for segmenting and classifying the nuclei in H&E-stained histopathological images. First, RepSNet estimates the boundary position information (BPI) of the parent nucleus for each pixel. The BPI estimation incorporates the local information of the pixel and the contextual information of the parent nucleus. Then, the nucleus boundary is estimated by aggregating the BPIs from a series of pixels using a proposed boundary voting mechanism (BVM), and the instance segmentation results are computed from the estimated nucleus boundary using a connected component analysis procedure. The BVM intrinsically achieves a kind of synergistic belief enhancement among the BPIs from various pixels. Therefore, different from the methods available in literature that obtain nucleus boundaries based on a direct pixel recognition scheme, RepSNet computes its boundary decisions based on some guidances from macroscopic information using an integration mechanism. In addition, RepSNet employs a re-parametrizable encoder-decoder structure. This model can not only aggregate features from some receptive fields with various scales which helps segmentation accuracy improvement, but also reduce the parameter amount and computational burdens in the model inference phase through the structural re-parameterization technique. In the experimental comparisons and evaluations on the Lizard dataset, RepSNet demonstrated superior segmentation accuracy and inference speed compared to several typical benchmark models. The experimental code, dataset splitting configuration and the pre-trained model were released at https://github.com/luckyrz0/RepSNet.</p>\",\"PeriodicalId\":13752,\"journal\":{\"name\":\"International Journal of Computer Vision\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11263-024-02332-z\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02332-z","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
RepSNet: A Nucleus Instance Segmentation Model Based on Boundary Regression and Structural Re-Parameterization
Pathological diagnosis is the gold standard for tumor diagnosis, and nucleus instance segmentation is a key step in digital pathology analysis and pathological diagnosis. However, the computational efficiency of the model and the treatment of overlapping targets are the major challenges in the studies of this problem. To this end, a neural network model RepSNet was designed based on a nucleus boundary regression and a structural re-parameterization scheme for segmenting and classifying the nuclei in H&E-stained histopathological images. First, RepSNet estimates the boundary position information (BPI) of the parent nucleus for each pixel. The BPI estimation incorporates the local information of the pixel and the contextual information of the parent nucleus. Then, the nucleus boundary is estimated by aggregating the BPIs from a series of pixels using a proposed boundary voting mechanism (BVM), and the instance segmentation results are computed from the estimated nucleus boundary using a connected component analysis procedure. The BVM intrinsically achieves a kind of synergistic belief enhancement among the BPIs from various pixels. Therefore, different from the methods available in literature that obtain nucleus boundaries based on a direct pixel recognition scheme, RepSNet computes its boundary decisions based on some guidances from macroscopic information using an integration mechanism. In addition, RepSNet employs a re-parametrizable encoder-decoder structure. This model can not only aggregate features from some receptive fields with various scales which helps segmentation accuracy improvement, but also reduce the parameter amount and computational burdens in the model inference phase through the structural re-parameterization technique. In the experimental comparisons and evaluations on the Lizard dataset, RepSNet demonstrated superior segmentation accuracy and inference speed compared to several typical benchmark models. The experimental code, dataset splitting configuration and the pre-trained model were released at https://github.com/luckyrz0/RepSNet.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.