通过系统结构优化发现蛋白水解稳定的单核细胞运动抑制因子肽

IF 6 2区 医学 Q1 CHEMISTRY, MEDICINAL European Journal of Medicinal Chemistry Pub Date : 2025-01-03 DOI:10.1016/j.ejmech.2025.117237
Yajing Ji, Yuan Gao, Xiang Li, Honggang Hu, Yuefan Zhang, Yejiao Shi
{"title":"通过系统结构优化发现蛋白水解稳定的单核细胞运动抑制因子肽","authors":"Yajing Ji, Yuan Gao, Xiang Li, Honggang Hu, Yuefan Zhang, Yejiao Shi","doi":"10.1016/j.ejmech.2025.117237","DOIUrl":null,"url":null,"abstract":"The identification of novel molecular candidates capable of treating osteoarthritis (OA) has significant clinical implications. Monocyte locomotion inhibitory factor peptide (MLIF) is a pentapeptide derived from <em>Entamoeba histolytica</em>. It has been found possesses selective anti-inflammatory effects both <em>in vitro</em> and <em>in vivo</em>. Nonetheless, like many peptide therapeutics, MLIF has relatively poor proteolytic stability and short half-life <em>in vivo</em>, hindering its effective clinical applicability. To overcome these limitations, structural optimizations are needed to enhance the stability of MLIF while preserving or even enhancing its anti-inflammatory activities. Herein, a series of MLIF derivatives were designed and synthesized based on diverse structural modifications including <em>N</em>-terminal modifications, <sub>D</sub>-amino acid replacement, <em>N</em>-methylation, sulfhydryl modification, cyclization, and splicing strategy. Among all the MLIF derivatives, MLIF 30 with replacing <sub>L</sub>-methionine (Met) with <sub>D</sub>-Met and linking the polyethylene glycol (PEG) to cysteine (Cys) of MLIF displayed enhanced <em>in vitro</em> anti-inflammatory activities. Further <em>in vivo</em> experiment demonstrated MLIF 30 could reduce cartilage inflammation and attenuate cartilage damage more effectively in the collagenase induced osteoarthritis (CIOA) mice due to its improved serum stability compared to the linear MLIF. These findings laid foundation for the development of potent and stable anti-inflammatory peptide therapeutics and pushed the frontier of MLIF for clinical OA treatment.","PeriodicalId":314,"journal":{"name":"European Journal of Medicinal Chemistry","volume":"122 9 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of proteolytically stable monocyte locomotion inhibitory factor peptide through systematic structural optimization\",\"authors\":\"Yajing Ji, Yuan Gao, Xiang Li, Honggang Hu, Yuefan Zhang, Yejiao Shi\",\"doi\":\"10.1016/j.ejmech.2025.117237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The identification of novel molecular candidates capable of treating osteoarthritis (OA) has significant clinical implications. Monocyte locomotion inhibitory factor peptide (MLIF) is a pentapeptide derived from <em>Entamoeba histolytica</em>. It has been found possesses selective anti-inflammatory effects both <em>in vitro</em> and <em>in vivo</em>. Nonetheless, like many peptide therapeutics, MLIF has relatively poor proteolytic stability and short half-life <em>in vivo</em>, hindering its effective clinical applicability. To overcome these limitations, structural optimizations are needed to enhance the stability of MLIF while preserving or even enhancing its anti-inflammatory activities. Herein, a series of MLIF derivatives were designed and synthesized based on diverse structural modifications including <em>N</em>-terminal modifications, <sub>D</sub>-amino acid replacement, <em>N</em>-methylation, sulfhydryl modification, cyclization, and splicing strategy. Among all the MLIF derivatives, MLIF 30 with replacing <sub>L</sub>-methionine (Met) with <sub>D</sub>-Met and linking the polyethylene glycol (PEG) to cysteine (Cys) of MLIF displayed enhanced <em>in vitro</em> anti-inflammatory activities. Further <em>in vivo</em> experiment demonstrated MLIF 30 could reduce cartilage inflammation and attenuate cartilage damage more effectively in the collagenase induced osteoarthritis (CIOA) mice due to its improved serum stability compared to the linear MLIF. These findings laid foundation for the development of potent and stable anti-inflammatory peptide therapeutics and pushed the frontier of MLIF for clinical OA treatment.\",\"PeriodicalId\":314,\"journal\":{\"name\":\"European Journal of Medicinal Chemistry\",\"volume\":\"122 9 1\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ejmech.2025.117237\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejmech.2025.117237","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

鉴定能够治疗骨关节炎(OA)的新分子候选物具有重要的临床意义。单核细胞运动抑制因子肽(MLIF)是一种来源于溶组织内阿米巴的五肽。它已被发现具有选择性的抗炎作用,在体外和体内。然而,与许多肽类药物一样,MLIF的蛋白水解稳定性相对较差,体内半衰期较短,阻碍了其有效的临床应用。为了克服这些限制,需要对结构进行优化,以提高MLIF的稳定性,同时保持甚至增强其抗炎活性。本文设计并合成了一系列基于不同结构修饰的MLIF衍生物,包括n端修饰、d -氨基酸取代、n -甲基化、巯基修饰、环化和剪接策略。在所有MLIF衍生物中,用D-Met取代l -蛋氨酸(Met)并将聚乙二醇(PEG)与半胱氨酸(Cys)连接的MLIF 30显示出增强的体外抗炎活性。进一步的体内实验表明,与线性MLIF相比,MLIF 30提高了血清稳定性,可以更有效地减轻胶原酶诱导的骨关节炎(CIOA)小鼠的软骨炎症和软骨损伤。这些发现为开发高效稳定的抗炎肽疗法奠定了基础,并推动了MLIF在临床OA治疗中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discovery of proteolytically stable monocyte locomotion inhibitory factor peptide through systematic structural optimization
The identification of novel molecular candidates capable of treating osteoarthritis (OA) has significant clinical implications. Monocyte locomotion inhibitory factor peptide (MLIF) is a pentapeptide derived from Entamoeba histolytica. It has been found possesses selective anti-inflammatory effects both in vitro and in vivo. Nonetheless, like many peptide therapeutics, MLIF has relatively poor proteolytic stability and short half-life in vivo, hindering its effective clinical applicability. To overcome these limitations, structural optimizations are needed to enhance the stability of MLIF while preserving or even enhancing its anti-inflammatory activities. Herein, a series of MLIF derivatives were designed and synthesized based on diverse structural modifications including N-terminal modifications, D-amino acid replacement, N-methylation, sulfhydryl modification, cyclization, and splicing strategy. Among all the MLIF derivatives, MLIF 30 with replacing L-methionine (Met) with D-Met and linking the polyethylene glycol (PEG) to cysteine (Cys) of MLIF displayed enhanced in vitro anti-inflammatory activities. Further in vivo experiment demonstrated MLIF 30 could reduce cartilage inflammation and attenuate cartilage damage more effectively in the collagenase induced osteoarthritis (CIOA) mice due to its improved serum stability compared to the linear MLIF. These findings laid foundation for the development of potent and stable anti-inflammatory peptide therapeutics and pushed the frontier of MLIF for clinical OA treatment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.70
自引率
9.00%
发文量
863
审稿时长
29 days
期刊介绍: The European Journal of Medicinal Chemistry is a global journal that publishes studies on all aspects of medicinal chemistry. It provides a medium for publication of original papers and also welcomes critical review papers. A typical paper would report on the organic synthesis, characterization and pharmacological evaluation of compounds. Other topics of interest are drug design, QSAR, molecular modeling, drug-receptor interactions, molecular aspects of drug metabolism, prodrug synthesis and drug targeting. The journal expects manuscripts to present the rational for a study, provide insight into the design of compounds or understanding of mechanism, or clarify the targets.
期刊最新文献
Recent Advances in The Therapeutic Insights of Thiazole Scaffolds as Acetylcholinesterase Inhibitors Cytotoxic pyrrole-based gold(III) chelates target human topoisomerase II as dual-mode inhibitors and interact with human serum albumin Corrigendum to “Applying molecular hybridization to design a new class of pyrazolo[3,4-d] pyrimidines as Src inhibitors active in hepatocellular carcinoma” [Eur. J. Med. Chem. 280 (2024) 116929] Design, Synthesis and Evaluation of Diarylidenyl Piperidone-Ligated Platinum (IV) Complexes as Chemoimmunotherapeutic Agents Optimization of pyrazole/1,2,4-triazole as dual EGFR/COX-2 inhibitors: Design, synthesis, anticancer potential, apoptosis induction and cell cycle analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1