在超微孔金属-有机骨架中增强选择性CO2吸附的柔韧性受挫孔隙度

IF 19.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chem Pub Date : 2025-01-03 DOI:10.1016/j.chempr.2024.11.020
Xu Chen, Dhruv Menon, Xiaoliang Wang, Meng He, Mohammad Reza Alizadeh Kiapi, Mehrdad Asgari, Yuexi Lyu, Xianhui Tang, Luke L. Keenan, William Shepard, Lik H. Wee, Sihai Yang, Omar K. Farha, David Fairen-Jimenez
{"title":"在超微孔金属-有机骨架中增强选择性CO2吸附的柔韧性受挫孔隙度","authors":"Xu Chen, Dhruv Menon, Xiaoliang Wang, Meng He, Mohammad Reza Alizadeh Kiapi, Mehrdad Asgari, Yuexi Lyu, Xianhui Tang, Luke L. Keenan, William Shepard, Lik H. Wee, Sihai Yang, Omar K. Farha, David Fairen-Jimenez","doi":"10.1016/j.chempr.2024.11.020","DOIUrl":null,"url":null,"abstract":"Selective CO<sub>2</sub> capture from industry is crucial for reducing emissions from fossil fuel combustion. Flexible metal-organic frameworks (MOFs) have shown promise for CO<sub>2</sub> adsorption via differential binding and size-exclusion mechanisms. However, achieving precise pore-size control to selectively capture CO<sub>2</sub>, particularly in the presence of N<sub>2</sub> and water, remains a challenge. Here, we demonstrate a strategy for frustrating framework flexibility in a MOF to create an optimal, confined pore environment that enhances selective CO<sub>2</sub> recognition while maintaining high working capacity. We designed a flexible MOF, Cambridge University (CU)-4, by using a bulky cubane-derived ligand and In<sup>3+</sup> ions that undergo dynamic breathing with a 2 Å contraction upon solvent exchange and removal. <em>In situ</em> synchrotron X-ray diffraction and molecular simulations reveal that the stable narrow-pore configuration creates a hydrogen-rich cavity that selectively binds CO<sub>2</sub> via multiple hydrogen bonds. This physisorption-based CO<sub>2</sub> recognition remains effective even at 80% humidity, making CU-4 promising for post-combustion carbon capture.","PeriodicalId":268,"journal":{"name":"Chem","volume":"28 1","pages":""},"PeriodicalIF":19.1000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexibility-frustrated porosity for enhanced selective CO2 adsorption in an ultramicroporous metal-organic framework\",\"authors\":\"Xu Chen, Dhruv Menon, Xiaoliang Wang, Meng He, Mohammad Reza Alizadeh Kiapi, Mehrdad Asgari, Yuexi Lyu, Xianhui Tang, Luke L. Keenan, William Shepard, Lik H. Wee, Sihai Yang, Omar K. Farha, David Fairen-Jimenez\",\"doi\":\"10.1016/j.chempr.2024.11.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Selective CO<sub>2</sub> capture from industry is crucial for reducing emissions from fossil fuel combustion. Flexible metal-organic frameworks (MOFs) have shown promise for CO<sub>2</sub> adsorption via differential binding and size-exclusion mechanisms. However, achieving precise pore-size control to selectively capture CO<sub>2</sub>, particularly in the presence of N<sub>2</sub> and water, remains a challenge. Here, we demonstrate a strategy for frustrating framework flexibility in a MOF to create an optimal, confined pore environment that enhances selective CO<sub>2</sub> recognition while maintaining high working capacity. We designed a flexible MOF, Cambridge University (CU)-4, by using a bulky cubane-derived ligand and In<sup>3+</sup> ions that undergo dynamic breathing with a 2 Å contraction upon solvent exchange and removal. <em>In situ</em> synchrotron X-ray diffraction and molecular simulations reveal that the stable narrow-pore configuration creates a hydrogen-rich cavity that selectively binds CO<sub>2</sub> via multiple hydrogen bonds. This physisorption-based CO<sub>2</sub> recognition remains effective even at 80% humidity, making CU-4 promising for post-combustion carbon capture.\",\"PeriodicalId\":268,\"journal\":{\"name\":\"Chem\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":19.1000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chempr.2024.11.020\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.chempr.2024.11.020","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

从工业中选择性捕获二氧化碳对于减少化石燃料燃烧产生的排放至关重要。柔性金属有机框架(MOFs)通过差异结合和尺寸排斥机制显示出对CO2吸附的希望。然而,实现精确的孔径控制以选择性地捕获二氧化碳,特别是在氮气和水存在的情况下,仍然是一个挑战。在这里,我们展示了一种在MOF中抑制框架灵活性的策略,以创建最佳的受限孔隙环境,在保持高工作能力的同时增强选择性CO2识别。我们设计了一个灵活的MOF,剑桥大学(CU)-4,通过使用一个大体积的立方衍生配体和In3+离子,在溶剂交换和去除时进行2 Å收缩的动态呼吸。原位同步加速器x射线衍射和分子模拟表明,稳定的窄孔结构创造了一个富氢腔,通过多个氢键选择性地结合二氧化碳。即使在80%的湿度下,这种基于物理吸附的二氧化碳识别仍然有效,这使得CU-4有望用于燃烧后的碳捕获。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flexibility-frustrated porosity for enhanced selective CO2 adsorption in an ultramicroporous metal-organic framework
Selective CO2 capture from industry is crucial for reducing emissions from fossil fuel combustion. Flexible metal-organic frameworks (MOFs) have shown promise for CO2 adsorption via differential binding and size-exclusion mechanisms. However, achieving precise pore-size control to selectively capture CO2, particularly in the presence of N2 and water, remains a challenge. Here, we demonstrate a strategy for frustrating framework flexibility in a MOF to create an optimal, confined pore environment that enhances selective CO2 recognition while maintaining high working capacity. We designed a flexible MOF, Cambridge University (CU)-4, by using a bulky cubane-derived ligand and In3+ ions that undergo dynamic breathing with a 2 Å contraction upon solvent exchange and removal. In situ synchrotron X-ray diffraction and molecular simulations reveal that the stable narrow-pore configuration creates a hydrogen-rich cavity that selectively binds CO2 via multiple hydrogen bonds. This physisorption-based CO2 recognition remains effective even at 80% humidity, making CU-4 promising for post-combustion carbon capture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chem
Chem Environmental Science-Environmental Chemistry
CiteScore
32.40
自引率
1.30%
发文量
281
期刊介绍: Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.
期刊最新文献
Engineered material-binding peptide empowers biocatalysis in stainless steel flow reactors for phosphate recovery Osmium atomic sites on CuS nanoplates for efficient two-electron oxygen reduction into H2O2 Synthesis and magnetic property of a telluryl radical Enantioselective synthesis of amino acids by photocatalytic reduction of CO2 on chiral mesostructured ZnS The sustainability potential of single-atom catalysts in chemical process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1