Lu Wan, Ferdinand Rossa, Torsten Welfonder, Ekaterina Petrova, Pieter Pauwels
{"title":"使用语义数据建模为构建HVAC系统启用可扩展模型预测控制设计","authors":"Lu Wan, Ferdinand Rossa, Torsten Welfonder, Ekaterina Petrova, Pieter Pauwels","doi":"10.1016/j.autcon.2024.105929","DOIUrl":null,"url":null,"abstract":"Model Predictive Control (MPC) is a promising optimal control technique to reduce the energy consumption of Heating, Ventilation, and Air Conditioning systems in buildings. However, MPC currently involves significant manual efforts in data preparation, control model design, and software interface design. Better semantic representations of buildings, their systems, and telemetry data could help address these challenges. This paper proposes a standard semantic information model and tooling, tailored to BIM software, to streamline MPC design. The approach is tested in an office building, and the generated semantic graph is validated against a use case, where an MPC controller uses Resistance and Capacitance (RC) models that need to be parameterized. The results show that the automatically identified RC models achieve three-hour-ahead temperature predictions for two different rooms within 0.3 °C accuracy. This indicates that semantic data modelling can enable a scalable MPC configuration workflow and more efficient algorithm development and deployment in the future.","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"37 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enabling scalable Model Predictive Control design for building HVAC systems using semantic data modelling\",\"authors\":\"Lu Wan, Ferdinand Rossa, Torsten Welfonder, Ekaterina Petrova, Pieter Pauwels\",\"doi\":\"10.1016/j.autcon.2024.105929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Model Predictive Control (MPC) is a promising optimal control technique to reduce the energy consumption of Heating, Ventilation, and Air Conditioning systems in buildings. However, MPC currently involves significant manual efforts in data preparation, control model design, and software interface design. Better semantic representations of buildings, their systems, and telemetry data could help address these challenges. This paper proposes a standard semantic information model and tooling, tailored to BIM software, to streamline MPC design. The approach is tested in an office building, and the generated semantic graph is validated against a use case, where an MPC controller uses Resistance and Capacitance (RC) models that need to be parameterized. The results show that the automatically identified RC models achieve three-hour-ahead temperature predictions for two different rooms within 0.3 °C accuracy. This indicates that semantic data modelling can enable a scalable MPC configuration workflow and more efficient algorithm development and deployment in the future.\",\"PeriodicalId\":8660,\"journal\":{\"name\":\"Automation in Construction\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automation in Construction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.autcon.2024.105929\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.autcon.2024.105929","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Enabling scalable Model Predictive Control design for building HVAC systems using semantic data modelling
Model Predictive Control (MPC) is a promising optimal control technique to reduce the energy consumption of Heating, Ventilation, and Air Conditioning systems in buildings. However, MPC currently involves significant manual efforts in data preparation, control model design, and software interface design. Better semantic representations of buildings, their systems, and telemetry data could help address these challenges. This paper proposes a standard semantic information model and tooling, tailored to BIM software, to streamline MPC design. The approach is tested in an office building, and the generated semantic graph is validated against a use case, where an MPC controller uses Resistance and Capacitance (RC) models that need to be parameterized. The results show that the automatically identified RC models achieve three-hour-ahead temperature predictions for two different rooms within 0.3 °C accuracy. This indicates that semantic data modelling can enable a scalable MPC configuration workflow and more efficient algorithm development and deployment in the future.
期刊介绍:
Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities.
The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.