非平面二极管电子发射机制间跃迁的理论评估

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Electron Devices Pub Date : 2024-11-19 DOI:10.1109/TED.2024.3494753
Alex G. Sinelli;Lorin I. Breen;N. R. Sree Harsha;Adam M. Darr;Allison M. Komrska;Allen L. Garner
{"title":"非平面二极管电子发射机制间跃迁的理论评估","authors":"Alex G. Sinelli;Lorin I. Breen;N. R. Sree Harsha;Adam M. Darr;Allison M. Komrska;Allen L. Garner","doi":"10.1109/TED.2024.3494753","DOIUrl":null,"url":null,"abstract":"Theoretically and computationally describing the operation of nanodiodes requires characterizing the transitions between multiple electron emission mechanisms for nanodiodes with complicated geometries. This motivates our development of techniques to determine when simplified theories for individual mechanisms suffice compared to more complete, but more computationally expensive, models. Leveraging recent theories that define a canonical gap distance to translate planar theory to nonplanar diodes, we derive the conditions for the transitions among thermal emission, field emission, and space-charge-limited current density (SCLCD) in vacuum and with collisions for non-Cartesian coordinate systems, including spherical, cylindrical, and prolate spheroidal coordinate systems. Particle-in-cell (PIC) simulations of the current density as a function of applied voltage for a tip-to-plate geometry in vacuum agreed qualitatively with the asymptotes for thermal emission at low voltage and SCLCD at higher voltage using the canonical gap distance. This demonstrates the utility of this approach for guiding system design and suggests future extensions to save simulation time for more realistic geometries that are more computationally expensive.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 1","pages":"397-403"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical Assessment of the Transition Between Electron Emission Mechanisms for Nonplanar Diodes\",\"authors\":\"Alex G. Sinelli;Lorin I. Breen;N. R. Sree Harsha;Adam M. Darr;Allison M. Komrska;Allen L. Garner\",\"doi\":\"10.1109/TED.2024.3494753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Theoretically and computationally describing the operation of nanodiodes requires characterizing the transitions between multiple electron emission mechanisms for nanodiodes with complicated geometries. This motivates our development of techniques to determine when simplified theories for individual mechanisms suffice compared to more complete, but more computationally expensive, models. Leveraging recent theories that define a canonical gap distance to translate planar theory to nonplanar diodes, we derive the conditions for the transitions among thermal emission, field emission, and space-charge-limited current density (SCLCD) in vacuum and with collisions for non-Cartesian coordinate systems, including spherical, cylindrical, and prolate spheroidal coordinate systems. Particle-in-cell (PIC) simulations of the current density as a function of applied voltage for a tip-to-plate geometry in vacuum agreed qualitatively with the asymptotes for thermal emission at low voltage and SCLCD at higher voltage using the canonical gap distance. This demonstrates the utility of this approach for guiding system design and suggests future extensions to save simulation time for more realistic geometries that are more computationally expensive.\",\"PeriodicalId\":13092,\"journal\":{\"name\":\"IEEE Transactions on Electron Devices\",\"volume\":\"72 1\",\"pages\":\"397-403\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Electron Devices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10758355/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10758355/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

从理论上和计算上描述纳米二极管的工作需要表征具有复杂几何形状的纳米二极管的多种电子发射机制之间的跃迁。这促使我们开发技术,以确定与更完整但计算成本更高的模型相比,单个机制的简化理论何时足够。利用最近定义规范间隙距离的理论,将平面理论转化为非平面二极管,我们推导了真空中热发射、场发射和空间电荷限制电流密度(SCLCD)之间的转换条件,以及非笛卡尔坐标系(包括球面、圆柱形和长形球面坐标系)的碰撞。电池内粒子(PIC)模拟了真空中尖端到极板几何结构的电流密度随外加电压的函数,与使用规范间隙距离的低电压下热辐射和高电压下SCLCD的渐近线定性地一致。这证明了这种方法在指导系统设计方面的实用性,并提出了未来扩展的建议,以节省更现实的几何图形的仿真时间,这些几何图形的计算成本更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Theoretical Assessment of the Transition Between Electron Emission Mechanisms for Nonplanar Diodes
Theoretically and computationally describing the operation of nanodiodes requires characterizing the transitions between multiple electron emission mechanisms for nanodiodes with complicated geometries. This motivates our development of techniques to determine when simplified theories for individual mechanisms suffice compared to more complete, but more computationally expensive, models. Leveraging recent theories that define a canonical gap distance to translate planar theory to nonplanar diodes, we derive the conditions for the transitions among thermal emission, field emission, and space-charge-limited current density (SCLCD) in vacuum and with collisions for non-Cartesian coordinate systems, including spherical, cylindrical, and prolate spheroidal coordinate systems. Particle-in-cell (PIC) simulations of the current density as a function of applied voltage for a tip-to-plate geometry in vacuum agreed qualitatively with the asymptotes for thermal emission at low voltage and SCLCD at higher voltage using the canonical gap distance. This demonstrates the utility of this approach for guiding system design and suggests future extensions to save simulation time for more realistic geometries that are more computationally expensive.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
期刊最新文献
Table of Contents IEEE ELECTRON DEVICES SOCIETY IEEE Transactions on Electron Devices Information for Authors Advanced Bragg Resonator Integration for Enhanced Bandwidth and Stability in G-Band TWT With Staggered Double Vane Structure In-Circuit Inductance Measurement to Correct the Single-Pulse Avalanche Energy (Eas) of Transistor Under the Unclamped Inductive-Switching (UIS) Test
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1