Shuming Guo;Yinyin Lin;Hao Wang;Yao Li;Chongyan Gu;Weiqiang Liu;Yijun Cui
{"title":"面向物联网应用的0.09 pj /Bit逻辑兼容多时间可编程(MTP)内存PUF设计","authors":"Shuming Guo;Yinyin Lin;Hao Wang;Yao Li;Chongyan Gu;Weiqiang Liu;Yijun Cui","doi":"10.1109/TVLSI.2024.3496735","DOIUrl":null,"url":null,"abstract":"The Internet of Things (IoT) allows devices to interact for real-time data transfer and remote control. However, IoT hardware devices have been shown security vulnerabilities. Edge device authentications, as a crucial process for IoT systems, generate and use unique IDs for secure data transmissions. Conventional authentication techniques, computational and heavyweight, are challenging and infeasible in IoT due to limited resources in IoTs. Physical unclonable functions (PUFs), a lightweight hardware-based security primitive, were proposed for resource-constrained applications. We propose a new PUF design for resource-constrained IoT devices based on low-cost logic-compatible multiple-time programmable (MTP) memory cells. The structure includes an array of MTP differential memory cells and a PUF extraction circuit. The extraction method uses the random distribution of BL current after programming each memory cell in logic-compatible MTP memory as the entropy source of PUF. Responses are obtained by comparing the current values of two memory cells under a certain address by challenge, forming challenge–response pairs (CRPs). This scheme does not increase hardware consumption and circuit differences on edge devices and is intrinsic PUF. Finally, 200 PUF chips were fabricated by CSMC based on the 0.153-\n<inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>\nm MCU single-gate CMOS process. The performance of the logic-compatible MTP memory cell and its PUF was evaluated. A logic-compatible MTP cell has good programming erase efficiency and good durability and retention. The uniqueness of the proposed PUF is 50.29%, the uniformity is 51.82%, and the reliability is 93.61%.","PeriodicalId":13425,"journal":{"name":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","volume":"33 1","pages":"248-260"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 0.09-pJ/Bit Logic-Compatible Multiple-Time Programmable (MTP) Memory-Based PUF Design for IoT Applications\",\"authors\":\"Shuming Guo;Yinyin Lin;Hao Wang;Yao Li;Chongyan Gu;Weiqiang Liu;Yijun Cui\",\"doi\":\"10.1109/TVLSI.2024.3496735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Internet of Things (IoT) allows devices to interact for real-time data transfer and remote control. However, IoT hardware devices have been shown security vulnerabilities. Edge device authentications, as a crucial process for IoT systems, generate and use unique IDs for secure data transmissions. Conventional authentication techniques, computational and heavyweight, are challenging and infeasible in IoT due to limited resources in IoTs. Physical unclonable functions (PUFs), a lightweight hardware-based security primitive, were proposed for resource-constrained applications. We propose a new PUF design for resource-constrained IoT devices based on low-cost logic-compatible multiple-time programmable (MTP) memory cells. The structure includes an array of MTP differential memory cells and a PUF extraction circuit. The extraction method uses the random distribution of BL current after programming each memory cell in logic-compatible MTP memory as the entropy source of PUF. Responses are obtained by comparing the current values of two memory cells under a certain address by challenge, forming challenge–response pairs (CRPs). This scheme does not increase hardware consumption and circuit differences on edge devices and is intrinsic PUF. Finally, 200 PUF chips were fabricated by CSMC based on the 0.153-\\n<inline-formula> <tex-math>$\\\\mu $ </tex-math></inline-formula>\\nm MCU single-gate CMOS process. The performance of the logic-compatible MTP memory cell and its PUF was evaluated. A logic-compatible MTP cell has good programming erase efficiency and good durability and retention. The uniqueness of the proposed PUF is 50.29%, the uniformity is 51.82%, and the reliability is 93.61%.\",\"PeriodicalId\":13425,\"journal\":{\"name\":\"IEEE Transactions on Very Large Scale Integration (VLSI) Systems\",\"volume\":\"33 1\",\"pages\":\"248-260\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Very Large Scale Integration (VLSI) Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10769056/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10769056/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
A 0.09-pJ/Bit Logic-Compatible Multiple-Time Programmable (MTP) Memory-Based PUF Design for IoT Applications
The Internet of Things (IoT) allows devices to interact for real-time data transfer and remote control. However, IoT hardware devices have been shown security vulnerabilities. Edge device authentications, as a crucial process for IoT systems, generate and use unique IDs for secure data transmissions. Conventional authentication techniques, computational and heavyweight, are challenging and infeasible in IoT due to limited resources in IoTs. Physical unclonable functions (PUFs), a lightweight hardware-based security primitive, were proposed for resource-constrained applications. We propose a new PUF design for resource-constrained IoT devices based on low-cost logic-compatible multiple-time programmable (MTP) memory cells. The structure includes an array of MTP differential memory cells and a PUF extraction circuit. The extraction method uses the random distribution of BL current after programming each memory cell in logic-compatible MTP memory as the entropy source of PUF. Responses are obtained by comparing the current values of two memory cells under a certain address by challenge, forming challenge–response pairs (CRPs). This scheme does not increase hardware consumption and circuit differences on edge devices and is intrinsic PUF. Finally, 200 PUF chips were fabricated by CSMC based on the 0.153-
$\mu $
m MCU single-gate CMOS process. The performance of the logic-compatible MTP memory cell and its PUF was evaluated. A logic-compatible MTP cell has good programming erase efficiency and good durability and retention. The uniqueness of the proposed PUF is 50.29%, the uniformity is 51.82%, and the reliability is 93.61%.
期刊介绍:
The IEEE Transactions on VLSI Systems is published as a monthly journal under the co-sponsorship of the IEEE Circuits and Systems Society, the IEEE Computer Society, and the IEEE Solid-State Circuits Society.
Design and realization of microelectronic systems using VLSI/ULSI technologies require close collaboration among scientists and engineers in the fields of systems architecture, logic and circuit design, chips and wafer fabrication, packaging, testing and systems applications. Generation of specifications, design and verification must be performed at all abstraction levels, including the system, register-transfer, logic, circuit, transistor and process levels.
To address this critical area through a common forum, the IEEE Transactions on VLSI Systems have been founded. The editorial board, consisting of international experts, invites original papers which emphasize and merit the novel systems integration aspects of microelectronic systems including interactions among systems design and partitioning, logic and memory design, digital and analog circuit design, layout synthesis, CAD tools, chips and wafer fabrication, testing and packaging, and systems level qualification. Thus, the coverage of these Transactions will focus on VLSI/ULSI microelectronic systems integration.