Alexandre Almeida da Silva;Lucas Nogueira;Alexandre Coelho;Jarbas A. N. Silveira;César Marcon
{"title":"Securet3d:一种垂直部分连接3D-NoC的自适应、安全、容错感知路由算法","authors":"Alexandre Almeida da Silva;Lucas Nogueira;Alexandre Coelho;Jarbas A. N. Silveira;César Marcon","doi":"10.1109/TVLSI.2024.3500575","DOIUrl":null,"url":null,"abstract":"Multiprocessor systems-on-chip (MPSoCs) based on 3-D networks-on-chip (3D-NoCs) are crucial architectures for robust parallel computing, efficiently sharing resources across complex applications. To ensure the secure operation of these systems, it is essential to implement adaptive, fault-tolerant mechanisms capable of protecting sensitive data. This work proposes the Securet3d routing algorithm, which establishes secure data paths in fault-tolerant 3D-NoCs. Our approach enhances the Reflect3d algorithm by introducing a detailed scheme for mapping secure paths and improving the system’s ability to withstand faults. To validate its effectiveness, we compare Securet3d with three other fault-tolerant routing algorithms for vertically-partially connected 3D-NoCs. All algorithms were implemented in SystemVerilog and evaluated through simulation using ModelSim and hardware synthesis with Cadence’s Genus tool. Experimental results show that Securet3d reduces latency and enhances cost-effectiveness compared with other approaches. When implemented with a 28-nm technology library, Securet3d demonstrates minimal area and energy overhead, indicating scalability and efficiency. Under denial-of-service (DoS) attacks, Securet3d maintains basically unaltered average packet latencies on 70, 90, and 29 clock cycles for uniform random, bit-complement, and shuffle traffic, significantly lower than those of other algorithms without including security mechanisms (5763, 4632, and 3712 clock cycles in average, respectively). These results highlight the superior security, scalability, and adaptability of Securet3d for complex communication systems.","PeriodicalId":13425,"journal":{"name":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","volume":"33 1","pages":"275-287"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Securet3d: An Adaptive, Secure, and Fault-Tolerant Aware Routing Algorithm for Vertically–Partially Connected 3D-NoC\",\"authors\":\"Alexandre Almeida da Silva;Lucas Nogueira;Alexandre Coelho;Jarbas A. N. Silveira;César Marcon\",\"doi\":\"10.1109/TVLSI.2024.3500575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiprocessor systems-on-chip (MPSoCs) based on 3-D networks-on-chip (3D-NoCs) are crucial architectures for robust parallel computing, efficiently sharing resources across complex applications. To ensure the secure operation of these systems, it is essential to implement adaptive, fault-tolerant mechanisms capable of protecting sensitive data. This work proposes the Securet3d routing algorithm, which establishes secure data paths in fault-tolerant 3D-NoCs. Our approach enhances the Reflect3d algorithm by introducing a detailed scheme for mapping secure paths and improving the system’s ability to withstand faults. To validate its effectiveness, we compare Securet3d with three other fault-tolerant routing algorithms for vertically-partially connected 3D-NoCs. All algorithms were implemented in SystemVerilog and evaluated through simulation using ModelSim and hardware synthesis with Cadence’s Genus tool. Experimental results show that Securet3d reduces latency and enhances cost-effectiveness compared with other approaches. When implemented with a 28-nm technology library, Securet3d demonstrates minimal area and energy overhead, indicating scalability and efficiency. Under denial-of-service (DoS) attacks, Securet3d maintains basically unaltered average packet latencies on 70, 90, and 29 clock cycles for uniform random, bit-complement, and shuffle traffic, significantly lower than those of other algorithms without including security mechanisms (5763, 4632, and 3712 clock cycles in average, respectively). These results highlight the superior security, scalability, and adaptability of Securet3d for complex communication systems.\",\"PeriodicalId\":13425,\"journal\":{\"name\":\"IEEE Transactions on Very Large Scale Integration (VLSI) Systems\",\"volume\":\"33 1\",\"pages\":\"275-287\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Very Large Scale Integration (VLSI) Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10766899/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10766899/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Securet3d: An Adaptive, Secure, and Fault-Tolerant Aware Routing Algorithm for Vertically–Partially Connected 3D-NoC
Multiprocessor systems-on-chip (MPSoCs) based on 3-D networks-on-chip (3D-NoCs) are crucial architectures for robust parallel computing, efficiently sharing resources across complex applications. To ensure the secure operation of these systems, it is essential to implement adaptive, fault-tolerant mechanisms capable of protecting sensitive data. This work proposes the Securet3d routing algorithm, which establishes secure data paths in fault-tolerant 3D-NoCs. Our approach enhances the Reflect3d algorithm by introducing a detailed scheme for mapping secure paths and improving the system’s ability to withstand faults. To validate its effectiveness, we compare Securet3d with three other fault-tolerant routing algorithms for vertically-partially connected 3D-NoCs. All algorithms were implemented in SystemVerilog and evaluated through simulation using ModelSim and hardware synthesis with Cadence’s Genus tool. Experimental results show that Securet3d reduces latency and enhances cost-effectiveness compared with other approaches. When implemented with a 28-nm technology library, Securet3d demonstrates minimal area and energy overhead, indicating scalability and efficiency. Under denial-of-service (DoS) attacks, Securet3d maintains basically unaltered average packet latencies on 70, 90, and 29 clock cycles for uniform random, bit-complement, and shuffle traffic, significantly lower than those of other algorithms without including security mechanisms (5763, 4632, and 3712 clock cycles in average, respectively). These results highlight the superior security, scalability, and adaptability of Securet3d for complex communication systems.
期刊介绍:
The IEEE Transactions on VLSI Systems is published as a monthly journal under the co-sponsorship of the IEEE Circuits and Systems Society, the IEEE Computer Society, and the IEEE Solid-State Circuits Society.
Design and realization of microelectronic systems using VLSI/ULSI technologies require close collaboration among scientists and engineers in the fields of systems architecture, logic and circuit design, chips and wafer fabrication, packaging, testing and systems applications. Generation of specifications, design and verification must be performed at all abstraction levels, including the system, register-transfer, logic, circuit, transistor and process levels.
To address this critical area through a common forum, the IEEE Transactions on VLSI Systems have been founded. The editorial board, consisting of international experts, invites original papers which emphasize and merit the novel systems integration aspects of microelectronic systems including interactions among systems design and partitioning, logic and memory design, digital and analog circuit design, layout synthesis, CAD tools, chips and wafer fabrication, testing and packaging, and systems level qualification. Thus, the coverage of these Transactions will focus on VLSI/ULSI microelectronic systems integration.