FinFET寄生电容的结构影响研究及工艺优化

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Electron Devices Pub Date : 2024-11-25 DOI:10.1109/TED.2024.3496446
Yi Gu;Chengkang Tang;Xianghui Li;Qingqing Sun;David Wei Zhang;Hao Zhu
{"title":"FinFET寄生电容的结构影响研究及工艺优化","authors":"Yi Gu;Chengkang Tang;Xianghui Li;Qingqing Sun;David Wei Zhang;Hao Zhu","doi":"10.1109/TED.2024.3496446","DOIUrl":null,"url":null,"abstract":"While excelling in device density and driving capability, the fin field-effect transistor (FinFET) development has highlighted the increasing impact of parasitic capacitance on high-frequency performance. Here, we report a comprehensive impact study of FinFET structures and key process on the parasitic capacitance, particularly the gate-source/drain (S/D) capacitance (\n<inline-formula> <tex-math>${C} _{\\text {G-SD}}$ </tex-math></inline-formula>\n). By TCAD simulation, the optimal structural parameters of the fin and S/D geometry have been identified with improved dc performance as well as \n<inline-formula> <tex-math>${C} _{\\text {G-SD}}$ </tex-math></inline-formula>\n characteristics. The parasitic \n<inline-formula> <tex-math>${C} _{\\text {G-SD}}$ </tex-math></inline-formula>\n is further suppressed by optimized high-k/metal gate (HKMG) critical process steps. Enhanced ac performance is experimentally achieved realizing over 20% improvement in cutoff frequency (\n<inline-formula> <tex-math>${f} _{\\text {T}}$ </tex-math></inline-formula>\n) and maximum oscillation frequency (\n<inline-formula> <tex-math>${f} _{\\max }$ </tex-math></inline-formula>\n) as compared to baseline (320.4-GHz \n<inline-formula> <tex-math>${f} _{\\text {T}}$ </tex-math></inline-formula>\n and 362.2-GHz \n<inline-formula> <tex-math>${f} _{\\max }$ </tex-math></inline-formula>\n for nMOS and 393-GHz \n<inline-formula> <tex-math>${f} _{\\text {T}}$ </tex-math></inline-formula>\n and 168-GHz \n<inline-formula> <tex-math>${f} _{\\max }$ </tex-math></inline-formula>\n for pMOS). The results demonstrate practical potential in both device-level and circuit-level engineering toward advanced FinFET-based high-frequency applications.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 1","pages":"17-23"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Structural Impact Study and Process Optimization of FinFET Parasitic Capacitance\",\"authors\":\"Yi Gu;Chengkang Tang;Xianghui Li;Qingqing Sun;David Wei Zhang;Hao Zhu\",\"doi\":\"10.1109/TED.2024.3496446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While excelling in device density and driving capability, the fin field-effect transistor (FinFET) development has highlighted the increasing impact of parasitic capacitance on high-frequency performance. Here, we report a comprehensive impact study of FinFET structures and key process on the parasitic capacitance, particularly the gate-source/drain (S/D) capacitance (\\n<inline-formula> <tex-math>${C} _{\\\\text {G-SD}}$ </tex-math></inline-formula>\\n). By TCAD simulation, the optimal structural parameters of the fin and S/D geometry have been identified with improved dc performance as well as \\n<inline-formula> <tex-math>${C} _{\\\\text {G-SD}}$ </tex-math></inline-formula>\\n characteristics. The parasitic \\n<inline-formula> <tex-math>${C} _{\\\\text {G-SD}}$ </tex-math></inline-formula>\\n is further suppressed by optimized high-k/metal gate (HKMG) critical process steps. Enhanced ac performance is experimentally achieved realizing over 20% improvement in cutoff frequency (\\n<inline-formula> <tex-math>${f} _{\\\\text {T}}$ </tex-math></inline-formula>\\n) and maximum oscillation frequency (\\n<inline-formula> <tex-math>${f} _{\\\\max }$ </tex-math></inline-formula>\\n) as compared to baseline (320.4-GHz \\n<inline-formula> <tex-math>${f} _{\\\\text {T}}$ </tex-math></inline-formula>\\n and 362.2-GHz \\n<inline-formula> <tex-math>${f} _{\\\\max }$ </tex-math></inline-formula>\\n for nMOS and 393-GHz \\n<inline-formula> <tex-math>${f} _{\\\\text {T}}$ </tex-math></inline-formula>\\n and 168-GHz \\n<inline-formula> <tex-math>${f} _{\\\\max }$ </tex-math></inline-formula>\\n for pMOS). The results demonstrate practical potential in both device-level and circuit-level engineering toward advanced FinFET-based high-frequency applications.\",\"PeriodicalId\":13092,\"journal\":{\"name\":\"IEEE Transactions on Electron Devices\",\"volume\":\"72 1\",\"pages\":\"17-23\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Electron Devices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10766647/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10766647/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在器件密度和驱动能力方面表现优异的同时,翅片场效应晶体管(FinFET)的发展也凸显出寄生电容对高频性能的影响越来越大。在这里,我们报告了FinFET结构和关键工艺对寄生电容的全面影响研究,特别是栅源/漏极(S/D)电容(${C} _{\text {G-SD}}}$)。通过TCAD仿真,确定了最优的翅片结构参数和S/D几何形状,提高了直流性能和${C} _{\text {G-SD}}$特性。通过优化的高k/金属栅(HKMG)关键工艺步骤进一步抑制了寄生的${C} _{\text {G-SD}}$。与基线(nMOS为320.4 ghz ${f} _{\text {T}}$和362.2 ghz ${f} _{\max}$, pMOS为393 ghz ${f} _{\text {T}}$和168 ghz ${f} _{\max}$)相比,在截止频率(${f} _{\text {T}}$)和最大振荡频率(${f} _{\max}$)方面提高了20%以上。结果表明,在器件级和电路级工程中,基于finfet的先进高频应用具有实际潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Structural Impact Study and Process Optimization of FinFET Parasitic Capacitance
While excelling in device density and driving capability, the fin field-effect transistor (FinFET) development has highlighted the increasing impact of parasitic capacitance on high-frequency performance. Here, we report a comprehensive impact study of FinFET structures and key process on the parasitic capacitance, particularly the gate-source/drain (S/D) capacitance ( ${C} _{\text {G-SD}}$ ). By TCAD simulation, the optimal structural parameters of the fin and S/D geometry have been identified with improved dc performance as well as ${C} _{\text {G-SD}}$ characteristics. The parasitic ${C} _{\text {G-SD}}$ is further suppressed by optimized high-k/metal gate (HKMG) critical process steps. Enhanced ac performance is experimentally achieved realizing over 20% improvement in cutoff frequency ( ${f} _{\text {T}}$ ) and maximum oscillation frequency ( ${f} _{\max }$ ) as compared to baseline (320.4-GHz ${f} _{\text {T}}$ and 362.2-GHz ${f} _{\max }$ for nMOS and 393-GHz ${f} _{\text {T}}$ and 168-GHz ${f} _{\max }$ for pMOS). The results demonstrate practical potential in both device-level and circuit-level engineering toward advanced FinFET-based high-frequency applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
期刊最新文献
Table of Contents IEEE ELECTRON DEVICES SOCIETY IEEE Transactions on Electron Devices Information for Authors Advanced Bragg Resonator Integration for Enhanced Bandwidth and Stability in G-Band TWT With Staggered Double Vane Structure In-Circuit Inductance Measurement to Correct the Single-Pulse Avalanche Energy (Eas) of Transistor Under the Unclamped Inductive-Switching (UIS) Test
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1