改进交通状态表征:城市道路网络链路选择的一种新方法

Syed Muzammil Abbas Rizvi;Bernhard Friedrich
{"title":"改进交通状态表征:城市道路网络链路选择的一种新方法","authors":"Syed Muzammil Abbas Rizvi;Bernhard Friedrich","doi":"10.26599/JICV.2023.9210047","DOIUrl":null,"url":null,"abstract":"The macroscopic fundamental diagram (MFD) represents the aggregated traffic states of a road network. However, the uniqueness of an empirically estimated MFD cannot be guaranteed due to the problem of link selection. Instationarity and varying flow patterns make it difficult to select link flows that are representative of the traffic state in the whole network. This study developed a new method for selecting links equipped with loop detectors that represent a particular traffic state of a road network. The method utilizes a metric of heterogeneity characterizing the role of a network link over the time of day. The dispersion metric indicates the heterogeneity in traffic states and the dynamic role of each time interval. It ranks links based on the heterogeneity-weighted saturation level, with the highest-rank links representing the most homogeneous subset of sample links. This study compared classical and proposed dynamic weights using loop detector data from Zurich and London and a simulated network. Sample links were selected based on different saturation levels, and the saturation level was associated with the heterogeneity level to identify the links creating heterogeneity in the road network.","PeriodicalId":100793,"journal":{"name":"Journal of Intelligent and Connected Vehicles","volume":"7 4","pages":"266-278"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10823100","citationCount":"0","resultStr":"{\"title\":\"Improving the Representation of Traffic States: A Novel Method for Link Selection of Urban Road Networks\",\"authors\":\"Syed Muzammil Abbas Rizvi;Bernhard Friedrich\",\"doi\":\"10.26599/JICV.2023.9210047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The macroscopic fundamental diagram (MFD) represents the aggregated traffic states of a road network. However, the uniqueness of an empirically estimated MFD cannot be guaranteed due to the problem of link selection. Instationarity and varying flow patterns make it difficult to select link flows that are representative of the traffic state in the whole network. This study developed a new method for selecting links equipped with loop detectors that represent a particular traffic state of a road network. The method utilizes a metric of heterogeneity characterizing the role of a network link over the time of day. The dispersion metric indicates the heterogeneity in traffic states and the dynamic role of each time interval. It ranks links based on the heterogeneity-weighted saturation level, with the highest-rank links representing the most homogeneous subset of sample links. This study compared classical and proposed dynamic weights using loop detector data from Zurich and London and a simulated network. Sample links were selected based on different saturation levels, and the saturation level was associated with the heterogeneity level to identify the links creating heterogeneity in the road network.\",\"PeriodicalId\":100793,\"journal\":{\"name\":\"Journal of Intelligent and Connected Vehicles\",\"volume\":\"7 4\",\"pages\":\"266-278\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10823100\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent and Connected Vehicles\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10823100/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent and Connected Vehicles","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10823100/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

宏观基本图(MFD)表示路网的总体交通状态。然而,由于链路选择问题,经验估计的MFD的唯一性不能得到保证。不稳定性和流量模式的变化使得选择能够代表整个网络中流量状态的链路流变得困难。本研究开发了一种新的方法,用于选择配备环路检测器的链路,该环路检测器代表道路网络的特定交通状态。该方法利用异构度量来表征网络链路在一天中的作用。离散度指标反映了交通状态的异质性和每个时间间隔的动态作用。它根据异质性加权饱和水平对链接进行排名,排名最高的链接代表样本链接中最均匀的子集。本研究使用来自苏黎世和伦敦的环路检测器数据和模拟网络比较了经典和提议的动态权重。根据不同的饱和水平选择样本链路,并将饱和水平与异质性水平相关联,以识别路网中产生异质性的链路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving the Representation of Traffic States: A Novel Method for Link Selection of Urban Road Networks
The macroscopic fundamental diagram (MFD) represents the aggregated traffic states of a road network. However, the uniqueness of an empirically estimated MFD cannot be guaranteed due to the problem of link selection. Instationarity and varying flow patterns make it difficult to select link flows that are representative of the traffic state in the whole network. This study developed a new method for selecting links equipped with loop detectors that represent a particular traffic state of a road network. The method utilizes a metric of heterogeneity characterizing the role of a network link over the time of day. The dispersion metric indicates the heterogeneity in traffic states and the dynamic role of each time interval. It ranks links based on the heterogeneity-weighted saturation level, with the highest-rank links representing the most homogeneous subset of sample links. This study compared classical and proposed dynamic weights using loop detector data from Zurich and London and a simulated network. Sample links were selected based on different saturation levels, and the saturation level was associated with the heterogeneity level to identify the links creating heterogeneity in the road network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
期刊最新文献
Front Cover Contents Advancements and Prospects in Multisensor Fusion for Autonomous Driving Extracting Networkwide Road Segment Location, Direction, and Turning Movement Rules From Global Positioning System Vehicle Trajectory Data for Macrosimulation Decision Making and Control of Autonomous Vehicles Under the Condition of Front Vehicle Sideslip
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1