用HEPES缓冲的模拟体液监测生物玻璃的溶解/沉淀行为

IF 5.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Advances Pub Date : 2024-11-27 DOI:10.1039/D4MA00752B
Diana Horkavcová, Eliška Sedláčková, Petr Bezdička, Miloslav Lhotka, Karolína Pánová and Aleš Helebrant
{"title":"用HEPES缓冲的模拟体液监测生物玻璃的溶解/沉淀行为","authors":"Diana Horkavcová, Eliška Sedláčková, Petr Bezdička, Miloslav Lhotka, Karolína Pánová and Aleš Helebrant","doi":"10.1039/D4MA00752B","DOIUrl":null,"url":null,"abstract":"<p >This research work investigates a 7-day interaction of bioactive glass in the form of grit with simulated body fluid with addition of HEPES buffer (SBF+H). The standard fluid buffered by TRIS (SBF+T) and unbuffered (SBF-Ø) were used for comparison. To understand the process more precisely, the material and the leachates were analyzed at hourly (1H, 2H, 4H) and daily (1D, 2D, 3D, 4D, 7D) intervals. During the static <em>in vitro</em> test the weight and specific surface area of the materials were measured and the surface and volume changes of the material character/composition were monitored by SEM/EDS and XRD. Samples of solution leachates were collected at regular intervals to determine concentrations of calcium, silicon and (PO<small><sub>4</sub></small>)<small><sup>3−</sup></small> and to measure pH. After exposure in SBF+T and SBF+H a new crystalline layer of hydroxyapatite formed on the material surface. The material exposed to SBF+H dissolved less than the one exposed to SBF+T but the hydroxyapatite layer on its surface grew faster. The material exposed only to SBF-Ø without any buffer dissolved much less, while the ions released into the solution very rapidly re-precipitated on the surface. As a result, three amorphous layers containing Si, Ca and P with different thicknesses were gradually formed on the surface. Results of material and solution analyses have clearly shown that both HEPES and TRIS buffers have a significant effect on the formation of hydroxyapatite on the surface of bioactive glass. The behavior of the HEPES buffer with highly bioactive bioglass is very similar to that of the TRIS buffer.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 1","pages":" 214-223"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d4ma00752b?page=search","citationCount":"0","resultStr":"{\"title\":\"Monitoring of the dissolution/precipitation behavior of bioglass with simulated body fluid buffered by HEPES\",\"authors\":\"Diana Horkavcová, Eliška Sedláčková, Petr Bezdička, Miloslav Lhotka, Karolína Pánová and Aleš Helebrant\",\"doi\":\"10.1039/D4MA00752B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This research work investigates a 7-day interaction of bioactive glass in the form of grit with simulated body fluid with addition of HEPES buffer (SBF+H). The standard fluid buffered by TRIS (SBF+T) and unbuffered (SBF-Ø) were used for comparison. To understand the process more precisely, the material and the leachates were analyzed at hourly (1H, 2H, 4H) and daily (1D, 2D, 3D, 4D, 7D) intervals. During the static <em>in vitro</em> test the weight and specific surface area of the materials were measured and the surface and volume changes of the material character/composition were monitored by SEM/EDS and XRD. Samples of solution leachates were collected at regular intervals to determine concentrations of calcium, silicon and (PO<small><sub>4</sub></small>)<small><sup>3−</sup></small> and to measure pH. After exposure in SBF+T and SBF+H a new crystalline layer of hydroxyapatite formed on the material surface. The material exposed to SBF+H dissolved less than the one exposed to SBF+T but the hydroxyapatite layer on its surface grew faster. The material exposed only to SBF-Ø without any buffer dissolved much less, while the ions released into the solution very rapidly re-precipitated on the surface. As a result, three amorphous layers containing Si, Ca and P with different thicknesses were gradually formed on the surface. Results of material and solution analyses have clearly shown that both HEPES and TRIS buffers have a significant effect on the formation of hydroxyapatite on the surface of bioactive glass. The behavior of the HEPES buffer with highly bioactive bioglass is very similar to that of the TRIS buffer.</p>\",\"PeriodicalId\":18242,\"journal\":{\"name\":\"Materials Advances\",\"volume\":\" 1\",\"pages\":\" 214-223\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d4ma00752b?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d4ma00752b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d4ma00752b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究研究了以沙砾形式存在的生物活性玻璃与添加HEPES缓冲液(SBF+H)的模拟体液的7天相互作用。采用TRIS缓冲的标准液(SBF+T)和未缓冲的标准液(SBF-Ø)进行比较。为了更准确地了解这一过程,每小时(1H、2H、4H)和每天(1D、2D、3D、4D、7D)对物料和渗滤液进行分析。在体外静态测试中,测量了材料的重量和比表面积,并通过SEM/EDS和XRD监测了材料性质/组成的表面和体积变化。定期收集溶液渗滤液样品,以测定钙、硅和(PO4)3−的浓度,并测量ph。暴露于SBF+T和SBF+H后,材料表面形成新的羟基磷灰石晶体层。SBF+H处理的材料溶解量小于SBF+T处理,但其表面羟基磷灰石层的生长速度更快。材料只暴露在SBF-Ø没有任何缓冲溶解少得多,而离子释放到溶液非常迅速地重新沉淀在表面上。结果在表面逐渐形成了三层不同厚度的含Si、Ca和P的非晶层。材料和溶液分析的结果清楚地表明HEPES和TRIS缓冲液对生物活性玻璃表面羟基磷灰石的形成有显著的影响。具有高生物活性生物玻璃的HEPES缓冲液的行为与TRIS缓冲液非常相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Monitoring of the dissolution/precipitation behavior of bioglass with simulated body fluid buffered by HEPES

This research work investigates a 7-day interaction of bioactive glass in the form of grit with simulated body fluid with addition of HEPES buffer (SBF+H). The standard fluid buffered by TRIS (SBF+T) and unbuffered (SBF-Ø) were used for comparison. To understand the process more precisely, the material and the leachates were analyzed at hourly (1H, 2H, 4H) and daily (1D, 2D, 3D, 4D, 7D) intervals. During the static in vitro test the weight and specific surface area of the materials were measured and the surface and volume changes of the material character/composition were monitored by SEM/EDS and XRD. Samples of solution leachates were collected at regular intervals to determine concentrations of calcium, silicon and (PO4)3− and to measure pH. After exposure in SBF+T and SBF+H a new crystalline layer of hydroxyapatite formed on the material surface. The material exposed to SBF+H dissolved less than the one exposed to SBF+T but the hydroxyapatite layer on its surface grew faster. The material exposed only to SBF-Ø without any buffer dissolved much less, while the ions released into the solution very rapidly re-precipitated on the surface. As a result, three amorphous layers containing Si, Ca and P with different thicknesses were gradually formed on the surface. Results of material and solution analyses have clearly shown that both HEPES and TRIS buffers have a significant effect on the formation of hydroxyapatite on the surface of bioactive glass. The behavior of the HEPES buffer with highly bioactive bioglass is very similar to that of the TRIS buffer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Advances
Materials Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.60
自引率
2.00%
发文量
665
审稿时长
5 weeks
期刊最新文献
Back cover Back cover Deciphering the electrochemical kinetics of sulfur vacancy-assisted nitrogen-doped NiCo2S4 combined with sulfur-doped g-C3N4 towards supercapacitor applications† Synthesis and preclinical evaluation of novel l-cystine-based polyamide nanocapsules loaded with a fixed-dose combination of thymoquinone and doxorubicin for targeted pulmonary anticancer drug delivery Exploring the effects of zirconium doping on barium titanate ceramics: structural, electrical, and optical properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1