Tuyen B Ly, Dat D B Nguyen, Anh M H Trinh, Nhi T T Tran, Thi H M Truong, Kien A Le, Ha V Le, Phung K Le
{"title":"Lignin nano/micro-particles from agricultural biomasses: Developing direct precipitation for integrated biorefinery.","authors":"Tuyen B Ly, Dat D B Nguyen, Anh M H Trinh, Nhi T T Tran, Thi H M Truong, Kien A Le, Ha V Le, Phung K Le","doi":"10.1016/j.biortech.2024.132025","DOIUrl":null,"url":null,"abstract":"<p><p>The state-of-the-art, simple and scalable methods for lignin micro-/nano-particles recovery from agricultural biomasses were evaluated in this review. Being non-wood biomasses, these materials can be easily fibrillated, supporting the usage of mild soda or organic solvent pretreatment. Different approaches in particle recovery were compared to conclude that the bottom-up approach facilitates smaller particles towards the nano-size range whereas mechanical treatment can act as a supporting method to increase uniformity and reduce particle sizes after bottom-up precipitation. By combining with the pretreatment steps, direct one-pot lignin micro-/nano-particle recovery can be achieved using the lignin-containing black liquor or organosolv liquor. These lignin micro-/nano-particles can then be applied as high-value functional products in cosmetics, pharmaceuticals, environmental remediation, and energy sectors. The systematic evaluation of lignin micro-/nano-particles recovery from agricultural biomasses in this review can support the full utilization of these natural resources to aim towards a circular agriculture.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"132025"},"PeriodicalIF":9.7000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2024.132025","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
Lignin nano/micro-particles from agricultural biomasses: Developing direct precipitation for integrated biorefinery.
The state-of-the-art, simple and scalable methods for lignin micro-/nano-particles recovery from agricultural biomasses were evaluated in this review. Being non-wood biomasses, these materials can be easily fibrillated, supporting the usage of mild soda or organic solvent pretreatment. Different approaches in particle recovery were compared to conclude that the bottom-up approach facilitates smaller particles towards the nano-size range whereas mechanical treatment can act as a supporting method to increase uniformity and reduce particle sizes after bottom-up precipitation. By combining with the pretreatment steps, direct one-pot lignin micro-/nano-particle recovery can be achieved using the lignin-containing black liquor or organosolv liquor. These lignin micro-/nano-particles can then be applied as high-value functional products in cosmetics, pharmaceuticals, environmental remediation, and energy sectors. The systematic evaluation of lignin micro-/nano-particles recovery from agricultural biomasses in this review can support the full utilization of these natural resources to aim towards a circular agriculture.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.