酵母生产甜菜素用植物糖苷转移酶的筛选。

IF 3.1 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Applied Biochemistry and Biotechnology Pub Date : 2025-01-02 DOI:10.1007/s12010-024-05100-4
Christiane Glitz, Jane Dannow Dyekjær, Dovydas Vaitkus, Mahsa Babaei, Ditte Hededam Welner, Irina Borodina
{"title":"酵母生产甜菜素用植物糖苷转移酶的筛选。","authors":"Christiane Glitz, Jane Dannow Dyekjær, Dovydas Vaitkus, Mahsa Babaei, Ditte Hededam Welner, Irina Borodina","doi":"10.1007/s12010-024-05100-4","DOIUrl":null,"url":null,"abstract":"<p><p>To cover the rising demand for natural food dyes, new sources and production methods are needed. Microbial fermentation of nature-identical colours, such as the red pigment betanin, has the potential to be a cost-efficient alternative to plant extraction. The last step of betanin production is catalysed by a UDP-glycosyltransferase (UGT). To find a high-performing UGT, we screened 27 UGTs from different plant species and tested their ability to produce betanin in vivo in Saccharomyces cerevisiae. We identified two new UGTs likely involved in the betanin synthesis in the plant they derive from: CqGT2 (UGT73A37) from Chenopodium quinoa and BgGT2 (UGT92X1) from Bougainvillea glabra. The betanin-producing UGTs were also tested in Yarrowia lipolytica, where CqGT2 was the best-performing glycosyltransferase for betanin production. While it has previously been shown that the UGTs can glycosylate either betanidin or cyclo-DOPA to ultimately form betanin, the molecular mechanism behind the preference for the acceptor molecule has not been elucidated. Therefore, we performed in silico structural analysis to characterise the betanin-producing UGTs further, particularly by looking into their binding mechanism. The docking model suggested that a smaller binding site found in some UGTs only allows glycosylation of cDOPA, while a wider binding site allows glycosylation of both cyclo-DOPA and betanidin.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Screening of Plant UDP-Glycosyltransferases for Betanin Production in Yeast.\",\"authors\":\"Christiane Glitz, Jane Dannow Dyekjær, Dovydas Vaitkus, Mahsa Babaei, Ditte Hededam Welner, Irina Borodina\",\"doi\":\"10.1007/s12010-024-05100-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To cover the rising demand for natural food dyes, new sources and production methods are needed. Microbial fermentation of nature-identical colours, such as the red pigment betanin, has the potential to be a cost-efficient alternative to plant extraction. The last step of betanin production is catalysed by a UDP-glycosyltransferase (UGT). To find a high-performing UGT, we screened 27 UGTs from different plant species and tested their ability to produce betanin in vivo in Saccharomyces cerevisiae. We identified two new UGTs likely involved in the betanin synthesis in the plant they derive from: CqGT2 (UGT73A37) from Chenopodium quinoa and BgGT2 (UGT92X1) from Bougainvillea glabra. The betanin-producing UGTs were also tested in Yarrowia lipolytica, where CqGT2 was the best-performing glycosyltransferase for betanin production. While it has previously been shown that the UGTs can glycosylate either betanidin or cyclo-DOPA to ultimately form betanin, the molecular mechanism behind the preference for the acceptor molecule has not been elucidated. Therefore, we performed in silico structural analysis to characterise the betanin-producing UGTs further, particularly by looking into their binding mechanism. The docking model suggested that a smaller binding site found in some UGTs only allows glycosylation of cDOPA, while a wider binding site allows glycosylation of both cyclo-DOPA and betanidin.</p>\",\"PeriodicalId\":465,\"journal\":{\"name\":\"Applied Biochemistry and Biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Biochemistry and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12010-024-05100-4\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-024-05100-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

为了满足对天然食用色素不断增长的需求,需要新的来源和生产方法。微生物发酵自然相同的颜色,如红色色素甜菜素,有可能成为植物提取的一种经济有效的替代品。甜菜素生产的最后一步是由udp -糖基转移酶(UGT)催化。为了寻找一种高效的UGT,我们从不同的植物物种中筛选了27种UGT,并测试了它们在酿酒酵母体内产生甜菜素的能力。我们发现了两种可能参与甜菜素合成的新ugt:来自藜麦藜麦的CqGT2 (UGT73A37)和来自三角梅的BgGT2 (UGT92X1)。产甜菜素的ugt也在脂解耶氏菌中进行了测试,其中CqGT2是产甜菜素的最佳糖基转移酶。虽然以前的研究表明,ugt可以糖基化甜菜素或环多巴,最终形成甜菜素,但对受体分子的偏好背后的分子机制尚未阐明。因此,我们进行了硅结构分析,以进一步表征产生甜菜素的ugt,特别是通过研究它们的结合机制。对接模型表明,在一些ugt中发现的较小的结合位点只允许cDOPA的糖基化,而更宽的结合位点允许环dopa和甜菜素的糖基化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Screening of Plant UDP-Glycosyltransferases for Betanin Production in Yeast.

To cover the rising demand for natural food dyes, new sources and production methods are needed. Microbial fermentation of nature-identical colours, such as the red pigment betanin, has the potential to be a cost-efficient alternative to plant extraction. The last step of betanin production is catalysed by a UDP-glycosyltransferase (UGT). To find a high-performing UGT, we screened 27 UGTs from different plant species and tested their ability to produce betanin in vivo in Saccharomyces cerevisiae. We identified two new UGTs likely involved in the betanin synthesis in the plant they derive from: CqGT2 (UGT73A37) from Chenopodium quinoa and BgGT2 (UGT92X1) from Bougainvillea glabra. The betanin-producing UGTs were also tested in Yarrowia lipolytica, where CqGT2 was the best-performing glycosyltransferase for betanin production. While it has previously been shown that the UGTs can glycosylate either betanidin or cyclo-DOPA to ultimately form betanin, the molecular mechanism behind the preference for the acceptor molecule has not been elucidated. Therefore, we performed in silico structural analysis to characterise the betanin-producing UGTs further, particularly by looking into their binding mechanism. The docking model suggested that a smaller binding site found in some UGTs only allows glycosylation of cDOPA, while a wider binding site allows glycosylation of both cyclo-DOPA and betanidin.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Biochemistry and Biotechnology
Applied Biochemistry and Biotechnology 工程技术-生化与分子生物学
CiteScore
5.70
自引率
6.70%
发文量
460
审稿时长
5.3 months
期刊介绍: This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities. In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.
期刊最新文献
An Update of Fungal Endophyte Diversity and Strategies for Augmenting Therapeutic Potential of their Potent Metabolites: Recent Advancement. Correction to: Evaluation and Optimization of the Different Process Parameters of Mild Acid Pretreatment of Waste Lignocellulosic Biomass for Enhanced Energy Procreation. Excellent Laccase Mimic Activity of Cu-Melamine and Its Applications in the Degradation of Congo Red. Identification of PIF1 as a Ferroptosis-Related Prognostic Biomarker Correlated with Immune Infiltration in Hepatocellular Carcinoma. Targeted Delivery of SmacN7 Peptide Induces Immunogenic Cell Death in Cervical Cancer Treatment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1