两个相互作用细胞间对准机理的动力学分析。

IF 2 4区 数学 Q2 BIOLOGY Bulletin of Mathematical Biology Pub Date : 2025-01-03 DOI:10.1007/s11538-024-01397-8
Vivienne Leech, Mohit P Dalwadi, Angelika Manhart
{"title":"两个相互作用细胞间对准机理的动力学分析。","authors":"Vivienne Leech, Mohit P Dalwadi, Angelika Manhart","doi":"10.1007/s11538-024-01397-8","DOIUrl":null,"url":null,"abstract":"<p><p>In this work we analytically investigate the alignment mechanism of self-propelled ellipse-shaped cells in two spatial dimensions interacting via overlap avoidance. By considering a two-cell system and imposing certain symmetries, we obtain an analytically tractable dynamical system, which we mathematically analyse in detail. We find that for elongated cells there is a half-stable steady state corresponding to perfect alignment between the cells. Whether cells move towards this state (i.e., become perfectly aligned) or not is determined by where in state space the initial condition lies. We find that a separatrix splits the state space into two regions, which characterise these two different outcomes. We find that some self-propulsion is necessary to achieve perfect alignment, however too much self-propulsion hinders alignment. Analysing the effect of small amounts of self-propulsion offers an insight into the timescales at play when a trajectory is moving towards the point of perfect alignment. We find that the two cells initially move apart to avoid overlap over a fast timescale, and then the presence of self-propulsion causes them to move towards a configuration of perfect alignment over a much slower timescale. Overall, our analysis highlights how the interaction between self-propulsion and overlap avoidance is sufficient to generate alignment.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"87 2","pages":"23"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698796/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Dynamical Analysis of the Alignment Mechanism Between Two Interacting Cells.\",\"authors\":\"Vivienne Leech, Mohit P Dalwadi, Angelika Manhart\",\"doi\":\"10.1007/s11538-024-01397-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this work we analytically investigate the alignment mechanism of self-propelled ellipse-shaped cells in two spatial dimensions interacting via overlap avoidance. By considering a two-cell system and imposing certain symmetries, we obtain an analytically tractable dynamical system, which we mathematically analyse in detail. We find that for elongated cells there is a half-stable steady state corresponding to perfect alignment between the cells. Whether cells move towards this state (i.e., become perfectly aligned) or not is determined by where in state space the initial condition lies. We find that a separatrix splits the state space into two regions, which characterise these two different outcomes. We find that some self-propulsion is necessary to achieve perfect alignment, however too much self-propulsion hinders alignment. Analysing the effect of small amounts of self-propulsion offers an insight into the timescales at play when a trajectory is moving towards the point of perfect alignment. We find that the two cells initially move apart to avoid overlap over a fast timescale, and then the presence of self-propulsion causes them to move towards a configuration of perfect alignment over a much slower timescale. Overall, our analysis highlights how the interaction between self-propulsion and overlap avoidance is sufficient to generate alignment.</p>\",\"PeriodicalId\":9372,\"journal\":{\"name\":\"Bulletin of Mathematical Biology\",\"volume\":\"87 2\",\"pages\":\"23\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698796/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Mathematical Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11538-024-01397-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-024-01397-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们分析了自走式椭圆形细胞在两个空间维度上通过避免重叠相互作用的对准机制。通过考虑双单元系统并施加一定的对称性,我们得到了一个解析可处理的动力系统,并对其进行了详细的数学分析。我们发现,对于细长的细胞,有一个半稳定的稳态,对应于细胞之间的完美排列。细胞是否向这种状态移动(即完全对齐)取决于初始条件在状态空间中的位置。我们发现一个分离矩阵将状态空间分成两个区域,这两个区域表征了这两种不同的结果。我们发现一定的自推进力是实现完美对准的必要条件,但过多的自推进力会阻碍对准。分析少量自我推进的影响,可以让我们深入了解轨迹向完美对准点移动时的时间尺度。我们发现两个细胞最初分开移动是为了避免在一个快速的时间尺度上重叠,然后自我推进的存在使它们在一个慢得多的时间尺度上朝着一个完美的排列方向移动。总的来说,我们的分析强调了自我推进和避免重叠之间的相互作用如何足以产生对齐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Dynamical Analysis of the Alignment Mechanism Between Two Interacting Cells.

In this work we analytically investigate the alignment mechanism of self-propelled ellipse-shaped cells in two spatial dimensions interacting via overlap avoidance. By considering a two-cell system and imposing certain symmetries, we obtain an analytically tractable dynamical system, which we mathematically analyse in detail. We find that for elongated cells there is a half-stable steady state corresponding to perfect alignment between the cells. Whether cells move towards this state (i.e., become perfectly aligned) or not is determined by where in state space the initial condition lies. We find that a separatrix splits the state space into two regions, which characterise these two different outcomes. We find that some self-propulsion is necessary to achieve perfect alignment, however too much self-propulsion hinders alignment. Analysing the effect of small amounts of self-propulsion offers an insight into the timescales at play when a trajectory is moving towards the point of perfect alignment. We find that the two cells initially move apart to avoid overlap over a fast timescale, and then the presence of self-propulsion causes them to move towards a configuration of perfect alignment over a much slower timescale. Overall, our analysis highlights how the interaction between self-propulsion and overlap avoidance is sufficient to generate alignment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
8.60%
发文量
123
审稿时长
7.5 months
期刊介绍: The Bulletin of Mathematical Biology, the official journal of the Society for Mathematical Biology, disseminates original research findings and other information relevant to the interface of biology and the mathematical sciences. Contributions should have relevance to both fields. In order to accommodate the broad scope of new developments, the journal accepts a variety of contributions, including: Original research articles focused on new biological insights gained with the help of tools from the mathematical sciences or new mathematical tools and methods with demonstrated applicability to biological investigations Research in mathematical biology education Reviews Commentaries Perspectives, and contributions that discuss issues important to the profession All contributions are peer-reviewed.
期刊最新文献
Epidemiological Dynamics in Populations Structured by Neighbourhoods and Households. An Asymptotic Analysis of Spike Self-Replication and Spike Nucleation of Reaction-Diffusion Patterns on Growing 1-D Domains. EAD Mechanisms in Hypertrophic Mouse Ventricular Myocytes: Insights from a Compartmentalized Mathematical Model. modelSSE: An R Package for Characterizing Infectious Disease Superspreading from Contact Tracing Data. Influence of Contact Lens Parameters on Tear Film Dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1