Pei Gie Yong, Ana-Manuela Segorean, Ana Sara Cordeiro
{"title":"设计质量原则应用于利多卡因溶解微针阵列的开发和优化-概念验证。","authors":"Pei Gie Yong, Ana-Manuela Segorean, Ana Sara Cordeiro","doi":"10.1007/s13346-024-01758-9","DOIUrl":null,"url":null,"abstract":"<p><p>The use of dissolving microneedle arrays (dMNA) for intradermal and transdermal drug delivery has been a growing trend in the field for the past decades. However, a lack of specific regulatory standards still hinders their clinical development and translation to market. It is also well-known that dMNA composition significantly impacts their performance, with each new formulation potentially presenting a challenge for developers, manufacturers and regulatory agencies. A systematic approach such as quality-by-design (QbD), which embeds quality from the very beginning of the product development process, allows the design and optimisation of a drug-loaded dMNA formulation with promising features. In this work, we defined the Quality Target Product Profile (QTPP) for lidocaine-loaded dMNA and optimised their composition through a sequential design of experiments (DoE) approach. The first step (DoE_1) confirmed the influence of all formulation components (PVP, PVA and sucrose) in the properties of the arrays and pre-optimised their settings for DoE_2. The array characterisation focused on previously defined critical quality attributes (drug content, dissolution time, mechanical strength, skin insertion and physical attributes). At its maximum desirability (85.15%), the optimised design space obtained in DoE_2 is predicted to produce Li-dMNA with high mechanical strength (< 10% needle height reduction), skin insertion (> 90% needle height) and Li-HCl loading (~ 5 mg), good physical attributes and dissolving in a maximum of 60 min. The flexible design space obtained allows for the production of dMNA that consistently meet the QTPP, reducing batch failure and end-product testing, which are common in the more rigid GMP approach. Overall, applying QbD principles to formulation development shows promise to increase product quality and facilitate translation of dMNA into the clinic.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quality-by-design principles applied to the development and optimisation of lidocaine-loaded dissolving microneedle arrays - a proof-of-concept.\",\"authors\":\"Pei Gie Yong, Ana-Manuela Segorean, Ana Sara Cordeiro\",\"doi\":\"10.1007/s13346-024-01758-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The use of dissolving microneedle arrays (dMNA) for intradermal and transdermal drug delivery has been a growing trend in the field for the past decades. However, a lack of specific regulatory standards still hinders their clinical development and translation to market. It is also well-known that dMNA composition significantly impacts their performance, with each new formulation potentially presenting a challenge for developers, manufacturers and regulatory agencies. A systematic approach such as quality-by-design (QbD), which embeds quality from the very beginning of the product development process, allows the design and optimisation of a drug-loaded dMNA formulation with promising features. In this work, we defined the Quality Target Product Profile (QTPP) for lidocaine-loaded dMNA and optimised their composition through a sequential design of experiments (DoE) approach. The first step (DoE_1) confirmed the influence of all formulation components (PVP, PVA and sucrose) in the properties of the arrays and pre-optimised their settings for DoE_2. The array characterisation focused on previously defined critical quality attributes (drug content, dissolution time, mechanical strength, skin insertion and physical attributes). At its maximum desirability (85.15%), the optimised design space obtained in DoE_2 is predicted to produce Li-dMNA with high mechanical strength (< 10% needle height reduction), skin insertion (> 90% needle height) and Li-HCl loading (~ 5 mg), good physical attributes and dissolving in a maximum of 60 min. The flexible design space obtained allows for the production of dMNA that consistently meet the QTPP, reducing batch failure and end-product testing, which are common in the more rigid GMP approach. Overall, applying QbD principles to formulation development shows promise to increase product quality and facilitate translation of dMNA into the clinic.</p>\",\"PeriodicalId\":11357,\"journal\":{\"name\":\"Drug Delivery and Translational Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Delivery and Translational Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13346-024-01758-9\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery and Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13346-024-01758-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Quality-by-design principles applied to the development and optimisation of lidocaine-loaded dissolving microneedle arrays - a proof-of-concept.
The use of dissolving microneedle arrays (dMNA) for intradermal and transdermal drug delivery has been a growing trend in the field for the past decades. However, a lack of specific regulatory standards still hinders their clinical development and translation to market. It is also well-known that dMNA composition significantly impacts their performance, with each new formulation potentially presenting a challenge for developers, manufacturers and regulatory agencies. A systematic approach such as quality-by-design (QbD), which embeds quality from the very beginning of the product development process, allows the design and optimisation of a drug-loaded dMNA formulation with promising features. In this work, we defined the Quality Target Product Profile (QTPP) for lidocaine-loaded dMNA and optimised their composition through a sequential design of experiments (DoE) approach. The first step (DoE_1) confirmed the influence of all formulation components (PVP, PVA and sucrose) in the properties of the arrays and pre-optimised their settings for DoE_2. The array characterisation focused on previously defined critical quality attributes (drug content, dissolution time, mechanical strength, skin insertion and physical attributes). At its maximum desirability (85.15%), the optimised design space obtained in DoE_2 is predicted to produce Li-dMNA with high mechanical strength (< 10% needle height reduction), skin insertion (> 90% needle height) and Li-HCl loading (~ 5 mg), good physical attributes and dissolving in a maximum of 60 min. The flexible design space obtained allows for the production of dMNA that consistently meet the QTPP, reducing batch failure and end-product testing, which are common in the more rigid GMP approach. Overall, applying QbD principles to formulation development shows promise to increase product quality and facilitate translation of dMNA into the clinic.
期刊介绍:
The journal provides a unique forum for scientific publication of high-quality research that is exclusively focused on translational aspects of drug delivery. Rationally developed, effective delivery systems can potentially affect clinical outcome in different disease conditions.
Research focused on the following areas of translational drug delivery research will be considered for publication in the journal.
Designing and developing novel drug delivery systems, with a focus on their application to disease conditions;
Preclinical and clinical data related to drug delivery systems;
Drug distribution, pharmacokinetics, clearance, with drug delivery systems as compared to traditional dosing to demonstrate beneficial outcomes
Short-term and long-term biocompatibility of drug delivery systems, host response;
Biomaterials with growth factors for stem-cell differentiation in regenerative medicine and tissue engineering;
Image-guided drug therapy,
Nanomedicine;
Devices for drug delivery and drug/device combination products.
In addition to original full-length papers, communications, and reviews, the journal includes editorials, reports of future meetings, research highlights, and announcements pertaining to the activities of the Controlled Release Society.