{"title":"人类疾病的多基因风险评分。","authors":"Dimitri J Maamari, Roukoz Abou-Karam, Akl C Fahed","doi":"10.1093/clinchem/hvae190","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Polygenic risk scores (PRS) are measures of genetic susceptibility to human health traits. With the advent of large data repositories combining genetic data and phenotypic information, PRS are providing valuable insights into the genetic architecture of complex diseases and are transforming the landscape of precision medicine.</p><p><strong>Content: </strong>PRS have emerged as tools with clinical utility in human disease. Herein, details on how to develop PRS are provided, followed by 5 areas in which they can be used to improve human health: (a) augmenting risk prediction, (b) refining diagnosis, (c) guiding treatment choices, (d) making clinical trials more efficient, and (e) improving public health. Finally, some of the ongoing challenges to the clinical implementation of PRS are noted.</p><p><strong>Summary: </strong>PRS can offer valuable information for providers and patients, including identifying risk of disease earlier in life and before the onset of clinical risk factors, guiding treatment decisions, improving public health outcomes, and making clinical trials more efficient. The future of genomic-informed risk assessments of disease is through integrated risk models that combine genetic factors including PRS, monogenic, and somatic DNA information with nongenetic risk factors such as clinical risk estimators and multiomic data. However, adopting PRS in a clinical setting at scale faces some challenges, including cross-ancestry performance, standardization and calibration of risk models, downstream clinical decision-making from risk information, and seamless integration into existing health systems.</p>","PeriodicalId":10690,"journal":{"name":"Clinical chemistry","volume":"71 1","pages":"69-76"},"PeriodicalIF":7.1000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polygenic Risk Scores in Human Disease.\",\"authors\":\"Dimitri J Maamari, Roukoz Abou-Karam, Akl C Fahed\",\"doi\":\"10.1093/clinchem/hvae190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Polygenic risk scores (PRS) are measures of genetic susceptibility to human health traits. With the advent of large data repositories combining genetic data and phenotypic information, PRS are providing valuable insights into the genetic architecture of complex diseases and are transforming the landscape of precision medicine.</p><p><strong>Content: </strong>PRS have emerged as tools with clinical utility in human disease. Herein, details on how to develop PRS are provided, followed by 5 areas in which they can be used to improve human health: (a) augmenting risk prediction, (b) refining diagnosis, (c) guiding treatment choices, (d) making clinical trials more efficient, and (e) improving public health. Finally, some of the ongoing challenges to the clinical implementation of PRS are noted.</p><p><strong>Summary: </strong>PRS can offer valuable information for providers and patients, including identifying risk of disease earlier in life and before the onset of clinical risk factors, guiding treatment decisions, improving public health outcomes, and making clinical trials more efficient. The future of genomic-informed risk assessments of disease is through integrated risk models that combine genetic factors including PRS, monogenic, and somatic DNA information with nongenetic risk factors such as clinical risk estimators and multiomic data. However, adopting PRS in a clinical setting at scale faces some challenges, including cross-ancestry performance, standardization and calibration of risk models, downstream clinical decision-making from risk information, and seamless integration into existing health systems.</p>\",\"PeriodicalId\":10690,\"journal\":{\"name\":\"Clinical chemistry\",\"volume\":\"71 1\",\"pages\":\"69-76\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/clinchem/hvae190\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICAL LABORATORY TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/clinchem/hvae190","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
Background: Polygenic risk scores (PRS) are measures of genetic susceptibility to human health traits. With the advent of large data repositories combining genetic data and phenotypic information, PRS are providing valuable insights into the genetic architecture of complex diseases and are transforming the landscape of precision medicine.
Content: PRS have emerged as tools with clinical utility in human disease. Herein, details on how to develop PRS are provided, followed by 5 areas in which they can be used to improve human health: (a) augmenting risk prediction, (b) refining diagnosis, (c) guiding treatment choices, (d) making clinical trials more efficient, and (e) improving public health. Finally, some of the ongoing challenges to the clinical implementation of PRS are noted.
Summary: PRS can offer valuable information for providers and patients, including identifying risk of disease earlier in life and before the onset of clinical risk factors, guiding treatment decisions, improving public health outcomes, and making clinical trials more efficient. The future of genomic-informed risk assessments of disease is through integrated risk models that combine genetic factors including PRS, monogenic, and somatic DNA information with nongenetic risk factors such as clinical risk estimators and multiomic data. However, adopting PRS in a clinical setting at scale faces some challenges, including cross-ancestry performance, standardization and calibration of risk models, downstream clinical decision-making from risk information, and seamless integration into existing health systems.
期刊介绍:
Clinical Chemistry is a peer-reviewed scientific journal that is the premier publication for the science and practice of clinical laboratory medicine. It was established in 1955 and is associated with the Association for Diagnostics & Laboratory Medicine (ADLM).
The journal focuses on laboratory diagnosis and management of patients, and has expanded to include other clinical laboratory disciplines such as genomics, hematology, microbiology, and toxicology. It also publishes articles relevant to clinical specialties including cardiology, endocrinology, gastroenterology, genetics, immunology, infectious diseases, maternal-fetal medicine, neurology, nutrition, oncology, and pediatrics.
In addition to original research, editorials, and reviews, Clinical Chemistry features recurring sections such as clinical case studies, perspectives, podcasts, and Q&A articles. It has the highest impact factor among journals of clinical chemistry, laboratory medicine, pathology, analytical chemistry, transfusion medicine, and clinical microbiology.
The journal is indexed in databases such as MEDLINE and Web of Science.